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Abstract

We modify the Einstein-Schrodinger theory to include a cosmological constant A,
which multiplies the symmetric metric. The cosmological constant A, is assumed to
be nearly cancelled by Schrodinger’s cosmological constant A, which multiplies the
nonsymmetric fundamental tensor, such that the total A=A, + A, matches measure-
ment. The resulting theory becomes exactly Einstein-Maxwell theory in the limit
as |A,| = oo. For |A,| ~ 1/(Planck length)? the field equations match the ordinary
Einstein and Maxwell equations except for extra terms which are < 107!6 of the
usual terms for worst-case field strengths and rates-of-change accessible to measure-
ment. Additional fields can be included in the Lagrangian, and these fields may
couple to the symmetric metric and the electromagnetic vector potential, just as
in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by
taking the divergence of the Einstein equations when sources are included. The
Einstein-Infeld-Hoffmann (EIH) equations of motion match the equations of motion
for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the exis-
tence of a Lorentz force without requiring sources. An exact charged solution matches
the Reissner-Nordstrom solution except for additional terms which are ~107% of the

usual terms for worst-case radii accessible to measurement. An exact electromagnetic



plane-wave solution is identical to its counterpart in Einstein-Maxwell theory. Peri-
center advance, deflection of light and time delay of light have a fractional difference
of <1079 compared to Einstein-Maxwell theory for worst-case parameters. When
a spin-1/2 field is included in the Lagrangian, the theory gives the ordinary Dirac
equation, and the charged solution results in fractional shifts of <107°° in Hydrogen
atom energy levels. Newman-Penrose methods are used to derive an exact solution of
the connection equations, and to show that the charged solution is Petrov type-D like
the Reissner-Nordstrom solution. The Newman-Penrose asymptotically flat O(1/r?)
expansion of the field equations is shown to match Einstein-Maxwell theory. Finally
we generalize the theory to non-Abelian fields, and show that a special case of the

resulting theory closely approximates Einstein-Weinberg-Salam theory.
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Chapter 1

Introduction

Einstein-Maxwell theory is the standard theory which couples general relativity with
electrodynamics. In this theory, space-time geometry and gravity are described by
a metric g, which is symmetric (g, = g.), and the electromagnetic field F},, is
antisymmetric (£, = —F,,). The fact that these two fields could be combined to-
gether into one second rank tensor was noticed long ago by researchers looking for
a more unified description of the physical laws. The Einstein-Schrodinger theory is
a generalization of vacuum general relativity which allows a nonsymmetric field N,
in place of the symmetric g,,. The theory without a cosmological constant was first
proposed by Einstein and Straus(1, 2, 3, 4, 5]. Schrédinger later showed that it could
be derived from a very simple Lagrangian density if a cosmological constant A, was
included|[6, 7, 8]. Einstein and Schrodinger suspected that the theory might include
electrodynamics, where the nonsymmetric “fundamental tensor” N, contained both
the metric and electromagnetic field. However, this hope was dashed when it was

found that the theory did not predict a Lorentz force between charged particles|9, 10].



In this dissertation we describe a simple modification of the Einstein-Schrodinger
theory[11, 12, 13, 14] which closely approximates Einstein-Maxwell theory, and where
the Lorentz force does occur. The modification involves the addition of a second cos-
mological term A.g,, to the field equations, where g, is the symmetric metric. We
assume this term is nearly canceled by Schrodinger’s “bare” cosmological term Ay N,
where N, is the nonsymmetric fundamental tensor. The total “physical” cosmolog-
ical constant A = A, + A, can then be made to match cosmological measurements of
the accelerating universe.

The origin of our A, is unknown. One possibility is that A, could arise from
vacuum fluctuations, an idea discussed by many authors[15, 16, 17, 18]. Zero-point
fluctuations are essential to both quantum electrodynamics and the Standard Model,
and are thought to be the cause of the Casimir force[16] and other effects. With
this interpretation, the fine tuning of cosmological constants is not so objectionable
because it resembles mass/charge/field-strength renormalization in quantum electro-
dynamics. For example, to cancel electron self-energy in quantum electrodynamics,
the “bare” electron mass becomes large for a cutoff frequency w,~1/(Planck length),
and infinite if w. — 0o, but the total “physical” mass remains small. In a similar
manner, to cancel zero-point energy in our theory, the “bare” cosmological constant
Ay ~ w? x (Planck length)? becomes large if w, ~ 1/(Planck length), and infinite if
w. — 00, but the total “physical” A remains small. There are other possible ori-
gins of A,. For example A, could arise dynamically, related to the minimum of a

potential of some additional field in the theory. Apart from the discussion above,

speculation about the origin of A, is outside the scope of this dissertation. Our main



goal is to show that the theory closely approximates Einstein-Maxwell theory, and for
non-Abelian fields the Einstein-Weinberg-Salam theory (general relativity coupled to
electro-weak theory).

Like Einstein-Maxwell theory, our theory can be coupled to additional fields using
a symmetric metric g,, and vector potential A,, and it is invariant under a U(1)
gauge transformation. The theory does not enlarge the invariance group. When
coupled to the Standard Model, the combined Lagrangian is invariant under the usual
U(1) ® SU(2) ® SU(3) gauge group. The usual U(1) gauge term F*"F),, is incorporated
together with the geometry, and is not explicitly in the Lagrangian. The non-Abelian
version of the theory can also be coupled to the Standard Model, in which case both
the U(1) and SU(2) gauge terms are incorporated together with the geometry. This
is done much as it is done in [19, 20] with Bonnor’s theory. Whether the SU(3) gauge
term of the Standard model could also be incorporated with a larger gauge group, or
by using higher space-time dimensions, is beyond the scope of this dissertation.

The Abelian version of our theory is similar to [21, 22] but with the opposite sign
of Ay and A,. Because of this difference our theory involves Hermitian fields instead of
real fields, and the spherically symmetric solutions have much different properties near
the origin and do not come in an infinite set. The Abelian version of our theory is also
roughly the electromagnetic dual of another theory[23, 24, 25, 26]. Compared to all
of these other theories, our theory also allows coupling to additional fields (sources),
and it allows A#0, and it is derived from a Lagrangian density which incorporates a
new type of non-symmetric Ricci tensor with different invariance properties.

Many other modifications of the Einstein-Schrodinger theory have been consid-



ered. For example in Bonnor’s theory[27, 28] the antisymmetric part of the funda-
mental tensor N, or its dual is taken to be the electromagnetic field, and a Lorentz
force is derived, but only because a v—NN 71}y, i-p] term is appended onto the usual
Lagrangian density. Other theories include an assortment of additional terms in the
Lagrangian density[29, 30]. Such theories lack the mathematical simplicity of the orig-
inal Einstein-Schrodinger theory, and for that reason they seem unsatisfying. This
criticism seems less applicable to our theory because there are such good motivations
for including a A,/—g¢g term in the Lagrangian density.

Some previous work[31, 32, 33] shows that the original Einstein-Schrodinger the-
ory has problems with negative energy “ghosts”. As will be seen in §2.4, this problem
is avoided in our theory in an unusual way. In [31, 32, 33] referenced above, the elec-
tromagnetic field is assumed to be an independent field added onto the Lagrangian,
and it is unrelated to Np,,. Because of the coupling of N,, to the electromagnetic
field in such theories, there would be observable violations[34, 35, 36] of the principle
of equivalence for values of N},,; which occur in the theory. Such problems do not
apply in our theory, mainly because we assume a symmetric metric which is defined in
terms of INV,,,, and it is this symmetric metric which appears in Maxwell’s equations,
and any coupling to additional fields. Such problems are also avoided in our theory
partly because of the small values of Nj,,,) which occur.

In most previous work on the original Einstein-Schrodinger theory, the electromag-
netic field is assumed to be the dual of N|;,. Even though this is the same definition
used in [9, 10] to show there is no Lorentz force, several authors claim that a Lorentz-

like force can be demonstrated[37, 38, 39]. However, the solutions[40, 41, 42] that



must be used for test particles have bad asymptotic behavior, such as a radial electric
field which is independent of radius at large distances. Our theory uses a different
definition of the electromagnetic field, and it has satisfactory exact solutions for both
an electric monopole as in §3.1, and an electromagnetic plane-wave as in §3.2.

Many others have contributed to the Einstein-Schrodinger theory. Of particular
significance to our modified theory are contributions related to the choice of metric[43,
44, 45, 37|, the generalized contracted Bianchi identity[43, 44, 45], the inclusion of
sources[45, 19, 37], and exact solutions with a cosmological constant[46, 47].

This dissertation is organized as follows. In §2.1 we discuss the Lagrangian density.
In §2.2-§2.4 we derive the field equations and quantify how closely they approximate
the field equations of Einstein-Maxwell theory. In §3.1 we present an exact charged
solution and show that it closely approximates the Reissner-Nordstrom solution. In
§3.2 we present an exact electromagnetic plane-wave solution which is identical to
its counterpart in Einstein-Maxwell theory. In §4.1 we derive the ordinary Lorentz
force equation by taking the divergence of the Einstein equations when sources are
included. In §4.2 we use the Lorentz force equation to derive the equations of motion
for charged and neutral particles around the charged solution. In §4.3 we derive the
Lorentz force using the EIH method, which requires no sources in the Lagrangian.
In §5.1-85.2 we calculate pericenter advance, deflection of light, and time delay of
light, and compare the results to Einstein-Maxwell theory. In §5.3 we include a spin-
1/2 field in the Lagrangian and estimate the shift in Hydrogen atom energy levels
for this theory as compared with Einstein-Maxwell theory. In §6.1 we represent the

exact field equations in Newman-Penrose tetrad form, and use this to derive an exact



solution of the connection equations, and to show that the charged solution is Petrov
type-D like the Reissner-Nordstrom solution. In §6.2 we derive the Newman-Penrose
asymptotically flat O(1/r?) expansion of the field equations, and compare the results
to Einstein-Maxwell theory. In §7.1-§7.3 we consider a generalization of our theory to
non-Abelian fields, and show that a special case of the theory closely approximates

Einstein-Weinberg-Salam theory.



Chapter 2

Extension of the

Einstein-Schrodinger theory for

Abelian fields

2.1 The Lagrangian density

Einstein-Maxwell theory can be derived from a Palatini Lagrangian density, meaning

that it depends on a connection I‘;T as well as the metric g,

L=
[’(F;\ﬂgpﬂAu) = _16_7T —g[g“ RVM(F)—I—ZA[)]

1 wri o y
VI A + Lo (0, Gy Ay -)-(21)

Here A, is a bare cosmological constant. The £,, term couples the metric g, and elec-
tromagnetic potential A, to additional fields, such as a hydrodynamic velocity vector

u”, spin-1/2 wavefunction 1, or perhaps the other fields of the Standard Model. The



original Einstein-Schrodinger theory allows a nonsymmetric N, and fff‘T in place of
the symmetric g,, and I’;}T, and excludes the \/—gA[a ;9™9"A},.) term (see Ap-

pendix M). Our “A-renormalized” Einstein-Schrodinger (LRES) theory introduces

an additional cosmological term /—gA.,,

~ 1 ~
Ly Npy) = —7o-V-N [N*WRW(P) + (n—Q)Ab]
1 v
__167T,/—g(n—2)Az+£m(u G A L), (2.2)

where Ay~ —A, so that the total A matches astronomical measurements[48],
A=A +A., ~ 107%cm™2, (2.3)
and the physical metric and electromagnetic potential are defined to be

V=g g" = V=NNw), A, = A[ia}/[(n—l)\/—QAb]- (2.4)

Equation (2.4) defines g"¥ unambiguously because /—g = [—det(y/—g g")]*/ ("2,
Here and throughout this paper we use geometrized units with ¢=G =1, the sym-
bols () and [] around indices indicate symmetrization and antisymmetrization, g =
det(gu,), N =det(N,,), and N™ is the inverse of N, such that N™“N,,, =d7. The di-
mension is assumed to be n=4, but “n” is retained in the equations to show how easily
the theory can be generalized. The £,, term is not to include a /—gAa g g““gﬁ”A[uﬁ,,]
part but may contain the rest of the Standard Model. In (2.2), Rw(f) is a form of

non-symmetric Ricci tensor with special invariance properties to be discussed later,

~

RV}L(F) == Fa - F(Oéz(ll),u) + qura - FU 1"04 - F[:_V]F[zu]/(n_l) (25)

vu,o (ao) va op

This tensor reduces to the ordinary Ricci tensor when fl‘i‘u is the Christoffel connection

with f[ffu] =0 and fg[m , =0, as occurs in ordinary general relativity.

8



It is helpful to decompose f‘jﬂ into a new connection fl‘i‘u, and A, from (2.4),

re, = T9, + (004, — 00 A) V=2, (2.6)
where I'9, = T9 + (5007, — 0017,0)/(n—1). (2.7)

By contracting (2.7) on the right and left we see that ff}# has the symmetry

Fgoz = F(O;a) = Fgw

(2.8)

so it has only n®—n independent components whereas fﬁ‘a had n?. Substituting (2.6)

into (2.5) as in R.17 gives

Run(T) = Rou(D) + 240, 0 v/—2A,. (2.9)

Using (2.9), the Lagrangian density (2.2) can be written in terms of I'?, and A,,

v

LT N,,) = —ﬁ\/—_]\f [ N (R + 2410 V/=245 ) + (n—z)Ab]
1 v
_ﬂ\/—g (n_2)Az+£m(u a,lvb>g;w>Aa-")' (210)

Here R, =R,,(T), and from (2.8,2.5) we have

Rop = D80 —T%,,+ 19,09, — 7,2 (2.11)

VL0 vpt oo vaT op’

From (2.6,2.8), fl‘i‘“ and A, fully parameterize f,‘j‘# and can be treated as independent
variables. It is simpler to calculate the field equations by setting §L/ 6fﬁu = 0 and
dL/5A, = 0 instead of setting 6L/ 5?,%: 0, so we will follow this method.

To do quantitative comparisons of this theory to Einstein-Maxwell theory we will

need to use some value for A,. One possibility is that A, results from zero-point



fluctuations[15, 16, 17, 18], in which case using (2.3) we get

Ay = —A, ~Cuwll} ~10%cm ™2 (2.12)

we. = (cutoff frequency)~1/Ip, (2.13)
1 fermion boson 60

C. = o (spin states  spin states> ~or (2.14)

where [p = (Planck length) =1.6 x 10723¢m. We will also consider the limit w, — oo,

|A.|— 00, Ay— 00 as in quantum electrodynamics, and we will prove that

(2.15)

lim ( A-renormalized )

( Einstein—Maxwell>
|A.|— oo \ Einstein-Schrodinger theory '

theory

The non-symmetric Ricci tensor (2.5) has the following invariance properties

Run(T) = Ry (T2,), (2.16)

Ryu(f;:._'_ oppa) = Ryu(fz;) for an arbitrary ¢(z7). (2.17)
From (2.16,2.17), the Lagrangians (2.2,2.10) are invariant under charge conjugation,

Q——Q, A,——A,, T2, —T%, T% »T% N, —N,, NN  (218)

j 7 %

and also under an electromagnetic gauge transformation

- h 0 te e ot 2R
Wh—s1pe’®, Ao Aa=G b Th o5 FgT—>F;¥T+55[°;¢,m/—2Ab, (2.19)

assuming that £, is invariant. With A, > 0, A, < 0 as in (2.12) then fl‘i‘u, f‘ﬁ‘w Ny
and N™# are all Hermitian, R,, and Ruu(f) are Hermitian from (2.16), and g¢,,,, A,
and L are real from (2.4,2.2,2.10).

In this theory the metric g, from (2.4) is used for measuring space-time inter-

vals, for calculating geodesics, and for raising and lowering of indices. The covariant

10



(192

derivative “;” is always done using the Christoffel connection formed from g,,,,

IV, = 59 (Guow + Jovp — Gopo)- (2.20)

N | —

We will see that taking the divergence of the Einstein equations using (2.20,2.4) gives
the ordinary Lorentz force equation. The electromagnetic field is defined in terms of

the vector potential (2.4)

Fu=A,, — AL (2.21)

S

However, we will also define another field f**
V=g [ = V=NNHA /24 (2.22)
Then from (2.4), g" and f“”\/ﬁiAgl/Q are parts of a total field,
(V=N /=g )N = g 1 proa /2N 12 (2.23)

We will see that the field equations require f,, ~ F),, to a very high precision. The
definitions (2.4) of g,, and A, in terms of the “fundamental” fields NPT,fp’\T may
seem unnatural from an empirical viewpoint. On the other hand, our Lagrangian
density (2.2) seems simpler than (2.1) of Einstein-Maxwell theory, it contains fewer
fields, and these fields have no symmetry restrictions. However, these are all very
subjective considerations. It is much more important that our theory closely matches
Einstein-Maxwell theory, and hence measurement.

Note that there are many nonsymmetric generalizations of the Ricci tensor besides
our version ’R,,#(f) from (2.5) and the ordinary Ricci tensor RW(IA”). For example,

we could form any weighted average of R,,M(/f), Ruy(f), Ryu(fT) and RW(fT), and

11



then add any linear combination of the tensors Fg[u r F[za/|a,| ) F[ﬁ ] F[‘;a], Fﬁa] F[Za]? and

]_‘*a

el

(o] quadratic in

] All of these generalized Ricci tensors would be linear in e

Vpt,o
FSM, and would reduce to the ordinary Ricci tensor when F[ =0 and fg[w] =0, as
occurs in ordinary general relativity. Even if we limit the tensor to only four terms,
there are still eight possibilities. We assert that invariance properties like (2.16,2.17)
are the most sensible way to choose among the different alternatives, not criteria such
as the number of terms in the expression.

Finally, let us discuss some notation issues. We use the symbol I}, for the Christof-
fel connection (2.20) whereas Einstein and Schrodinger used it for our f‘,}# and ﬁ?‘u
respectively. We use the symbol g, for the symmetric metric (2.4) whereas Einstein

and Schrodinger used it for our N, the nonsymmetric fundamental tensor. Also, to

v
represent the inverse of N,, we use N7 instead of the more conventional N7, be-
cause this latter notation would be ambiguous when using g"*” to raise indices. While
our notation differs from previous literature on the Einstein-Schrodinger theory, this

change is required by our explicit metric definition, and it is necessary to be consistent

with the much larger body of literature on Einstein-Maxwell theory.

2.2 The Einstein equations

To set 6L/5(v/—NN)= 0 we need some initial results. Using (2.4) and the identi-

ties det(sM)= s"det(M), det(M~')= 1/det(M) gives

(—det(vV=NN™))Y/ (=2 (2.24)

o

= (=det(v/=g.g)" "D = (=det(V=NN)VE2 (295)

12



Using (2.24,2.25,2.4) and the identity 0(det(M"))/OM*"” = M, 'det(M") gives

VN N Vg ___ G (2.26)

OW=NN*)  (n—2) OWV_NNw)  (n—2)

Setting 0L /5(v/—NN)= ( using (2.10,2.26) gives the field equations,

0 = —ior |5 ~ (o) 220

= Ropt 240,V 2iN*+ AN+ Asgp— 87S,y, (2.28)

where S,,, and the energy-momentum tensor 7, are defined by

oL oL
S, = 2 m —9 LL— 2.29
" 5(\/— Ny 0(y/—gg") (2:29)
1
T,, = S, g,,MSO‘ P pppp—— (2.30)

(n—2) Jruta
The second equality in (2.29) results because £, in (2.2) contains only the metric
V=9 3" =V~=NN"") from (2.4), and not /~NN" Taking the symmetric and

antisymmetric parts of (2.28) and using (2.21) gives

B 1 N
Rww) + NNy + Aegoy = 87 (Tvu - mg’/#Ta) : (2.31)

Ny = Fvu\/iiAgl/Z_ 7é[l/u]/\;l- (2.32)
Also from the curl of (2.32) we get
ﬁ[uu,a] + AbN[Vp,,O'] = 0. (233)

To put (2.31) into a form which looks more like the ordinary Einstein equations,
we need some preliminary results. The definitions (2.4,2.22) of g¢,,, and f,, can be

inverted exactly to give N,, in terms of g,,, and f,,. An expansion in powers of A’

13



will better serve our purposes, and is derived in Appendix C,

1
2(n—2)

N = fonV2i0,"2 + (0,72 (2.35)

N(VH) = -2 (f,/ fg’u gyufpafap) A_ (f4)A;2 R (234)

Here the notation (f?) and (f*) refers to terms like foof%f7, and fuaf%f7,f? -
Let us consider the size of these higher order terms relative to the leading order term
for worst-case fields accessible to measurement. In geometrized units an elementary

charge has

G e? Gh
Qe =e cA he 3

C

=Valp =138 x 107%¢ (2.36)

where o = ¢%/hc is the fine structure constant and lp = \/Gh/c3 is the Planck
length. If we assume that charged particles retain f!y ~ @Q/r? down to the smallest
radii probed by high energy particle physics experiments (107!7cm) we have from

(2.36,2.12),

[f1ol*/ s ~ (Qe/(1071)%)? /Ay ~ 107 (2.37)

Here | f1] is assumed to be in some standard spherical or cartesian coordinate system.
If an equation has a tensor term which can be neglected in one coordinate system,
it can be neglected in any coordinate system, so it is only necessary to prove it in
one coordinate system. The fields at 107'7cm from an elementary charge would be
larger than near any macroscopic charged object, and would also be larger than the
strongest plane-wave fields. Therefore the higher order terms in (2.34-2.35) must be
< 107% of the leading order terms, so they will be completely negligible for most
purposes.

14



In §2.4 we will calculate the connection equations resulting from 6L/ 61;3‘“ =0.

Solving these equations gives (2.62,2.63,2.67,2.69), which can be abbreviated as

0o, = Io, +0(Y, ~f;ﬂ]:om;l/?), (2.38)
Gy = Gt O(NY), R = O(N,), (2.39)

where I'}, is the Christoffel connection (2.20), Ryp=Ruu(D), Ry=R,,(T) and

. < 1 = 1
G = R = 590R G =Ruu— 5 92 (2.40)

In (2.39) the notation O(A;') and (’)(Aglﬂ) indicates terms like f7,.,f%..0A;' and

aa—1/2
f[vu,a]; Ab / .

From the antisymmetric part of the field equations (2.32) and (2.35,2.39) we get
fou = Fu+0OMNY. (2.41)

So f,, and F,, only differ by terms with Ay in the denominator, and the two become
identical in the limit as A, — oco. Combining the symmetric part of the field equations

(2.31) with its contraction, and substituting (2.40,2.34,2.3)

| ) 1 N

N(VM)_igVHN;)) = gu,u,_2(fl/ fa,u_mguufpfop>/\bl
! i 1 o\ )
—igl,#n‘i‘gyu(fpfo-p_mnfpfop>Ab1+(f4)Ab2"‘

= Guu (1 - g) - 2fuofcr,LLA;1
1
+ v (m +1— ﬁ) fpofUpAgl + (f4)A22 .

- (f oo }r"”’”f o ”") M- (g N 1) o+ (FHN? .

15



gives the Einstein equations

~ 1

n
Gy = 81T, — A <N(l,u)—§gw]\f£> +AZ<§ - 1) oy (2.42)

= 8nT,, +2 (fy"fw—igwfpf’fgp) +A (g — 1) Go + (FHN ... (2.43)
From (2.29,2.30) we see that T,,, will be the same as in ordinary general relativity,
for example when we include classical hydrodynamics or spin-1/2 fields as in [49]
or Appendix L. Therefore from (2.41,2.39), equation (2.43) differs from the ordinary
Einstein equations only by terms with A, in the denominator, and it becomes identical
to the ordinary Einstein equations in the limit as Ay — oo (with an observationally

valid total A). In §2.4 we will examine how close the approximation is for A, from

(2.12).

2.3 Maxwell’s equations

Setting 0L/0A,; = 0 and using (2.10,2.22) gives

A | OL oL
= - 2.44
’ V=9 {8147 (0Ar,w) ’“} (244
2 'A1/2 _ wT w
\Q—Fz (V=NNTT) | —drjm = (—Vg\/f_g)’ — 47, (2.45)

where

-1 [oL oL
- m_ m ). 2.46
e {8147 ((’Mw)’ } (2:40)
From (2.45,2.21) we get Maxwell’s equations,

for, = A, (2.47)

Fipay = O. (2.48)



where f,, = F,, + O(A,") from (2.41). From (2.2,2.46) we see that j* will be
the same as in ordinary general relativity, for example when we include classical
hydrodynamics or spin-1/2 fields as in [49] or Appendix L. From (2.41), we see that
equations (2.47,2.48) differ from the ordinary Maxwell equations only by terms with
Ay in the denominator, and these equations become identical to the ordinary Maxwell
equations in the limit as A, — 0o. In §2.4 we will examine how close the approximation
is for A, from (2.12).

Because L,, couples to additional fields only through g,, and A,, any equations
associated with additional fields will be the same as in ordinary general relativity. For
example in the spin-1/2 case, setting §£/6¢ =0 will give the ordinary Dirac equation
in curved space as in [49] or Appendix L. It would be interesting to investigate what

«

results if one includes f,,,, N, or fW in £,,, although there does not appear to be any

empirical reason for doing so. A continuity equation follows from (2.47) regardless of

the type of source,
3% = _7Tpr§[T§p] = 0. (2.49)

Note that the covariant derivative in (2.47,2.49) is done using the Christoffel connec-

tion (2.20) formed from the symmetric metric (2.4).

2.4 The connection equations

Setting 0L/ 5f‘,’j“M: 0 requires some preliminary calculations. With the definition

of _ ot (85 ) (2.50)
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and (2.10,2.11) we can calculate,

A'C —Huv ( so ST a ST
—167TAFB = 2V=NN"™(636760, 0 + [71,080500))
—2(V=NN"656700,62) 0 — (V=NN"55670054)
= —(V=NN7) 5 =T V=NN¥ —T7 /~NN" + 5, V-NN""
+O5(V=NNT) , + T V=NN) + 5 (V=NNT") ,  (2.51)
A
_in L (n—2)(v=NNTrl) | (2.52)
Al'@ ’
ap
A N
—167TAf§ = (n=1)((V=NN7), + I V=NN") + (V=NNT™]) . (2.53)

In these last two equations, the index contractions occur after the derivatives. At
. . i . 3
this point we must be careful. Because I';, has the symmetry (2.8), it has only n’—n
independent components, so there can only be n® — n independent field equations
associated with it. It is shown in Appendix B that instead of just setting (2.51) to

zero, the field equations associated with such a field are given by the expression,

55 &
0 = 167 Aj- s AL % AL (2.54)
AFT,O (n_l) Argp (n_1>AF?_‘a

= (V=NN7) 54+ T4 V=NN" 4+ I7,v/~NN* — T4 V=NN""
1
— 6 (V=NNlly —
il Jwt (n—1)
= (V=NN) 5+ fgﬂ\/—NN*W + 15 V=NN# -5 V=NN*
(n 1) ((57( [ N%[pw]) i 55( /_NN4[7—w])’w)

— (VNN 5 4 FT NN P NN - Py NN

K Wfi/g Ve (25)

These are the connection equations, analogous to (v/—g¢¢”").s = 0 in the symmet-

(n=2)05(V=NNT") ,+65(V=NNT1) )

ric case. Note that we can also derive Ampere’s law (2.45) by antisymmetrizing
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and contracting these equations. From the definition of matrix inverse N7 =

(1/N)ON/ON,,, NN, =0\ we get the identity

VN

OV—N \/ N
WV=N), = Nrpo N*PTNW — —TN*’JTVUNTP. (2.56)

oN,,

Contracting (2.55) with N;, using (2.8,2.56), and dividing this by (n—2) gives,

=0 8721 »
(\/—_N),ﬂ — Faﬁ\/—_N == _(n_l)(n 2)/\1/2 \/_gj N[pg]. (2.57)

From (2.57) we get

= 8721 V=g .
Lo — (= 1)(n—2)A}7 ( \/_—NJ”N[p[w),u] = (InV=N) =0 (2.58)

From (2.55,2.57) we get the contravariant connection equations,

NV g4 Do, N 41 N7 = STV2i Vg ('[P ]

- jlesT 4 J¥Niy N*PT). 2.59
(n—l)At/Q\/—_N B [aB] ( )

1
(n—2)

Multiplying this by —N,,N;, gives the covariant connection equations,

- —8mV2i /=g ( 1 )
N, FV Nop—T1%,Nva= Ny N — Nias Ny 2.60
mB T v Bu (n_l)Alb/Q V=N oVl (n—2) ) Vo | % ( )

Equation (2.60) together with (2.31,2.33,2.8) are often used to define the Einstein-
Schrodinger theory, particularly when 7,,=0, j*=0.

Equations (2.55) or (2.60) can be solved exactly as in [50, 51] or §6.1, similar to
the way g, =0 can be solved to get the Christoffel connection. An expansion in

powers of A;l will better serve our purposes, and such an expansion is derived in
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Appendix D, and is also stated without derivation in [45],

re, = o+, (2.61)
Tow = —2 [ Wl e+ £+ 4(n1_2) ((F7Fo0)." Gon=2(F"Fop) w0py)

+%jﬁ (f“pgw + ﬁfp(yag))} A4 (PN (2.62)

Yo, = B(fm“ = ) + (f%l)j[yag]} V2, + (N (2.63)

T = 2 [ 5 (n1_2> (f*fop)w — (n_1§+_2)j°‘ fw] AN+ (N2 (2.64)

In (2.61), I'}, is the Christoffel connection (2.20). The notation (f*) and (f*) refers
to terms like f; f75 f7p and fOr f7o [, fP - As in (2.34,2.35), we see from (2.37)
that the higher order terms in (2.62-2.64) must be <107% of the leading order terms,
so they will be completely negligible for most purposes.

Extracting Y7 5 of (2.61) from (2.11) gives (R.6,R.7),

Rew = Bup+ Toua=Tawm = Lo Yomw = Toa Yo+ Tow Toar  (2:65)

Riw = Towa=T0m Yow = Tia Yow + T Toa- (2.66)

[ve]
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Substituting (2.61-2.64,2.47) into (2.65) using ¢ = f*f,, gives

Row = B+ Y000 Tawm = Yo You -

T « T 1 « «
= Rvu_2[<f (Vfu) et f fT(V;u)"‘m(g, gvu_ng(Véu)))%a

47 2

-+ mjp;a (fapgllu + mfp(lfdg)>

4 , 9
(nirz)]p (f‘)‘pguu + mfp(u z)) o
1 8T o
2(n—2) Ciwipw) — m(] fow) 0

1 167
- = l/Oé'U Ja'u_ Uu'oz TN .1/50
4(f,+f, Frat ooyl a])

(n—

+

+

« « « 167 « —
X <fg“; +f%%e—f g;“—i-mj[a H])}Abl"'

L,
2(n—2) "+«

= Ry, — {2fT(VfM)a;T;a + 2foT(V; pia
o a o « 1 o «
_f V;af ;o + f u;afa,u; + §f a;uf oW

3272 3272 8T
8 ‘T‘I‘ll' - ‘I/. 5 v Ap'aa v, A_l-"
+87)" fr(vim) =1y’ J“+—(n—2)‘7 Jo9 ;H'—(n_z)] o pg u] b

R = R- [QfTﬁfﬁa;r;a + ﬁ 0% = 7 af 0 + %f"ﬁ;afaﬁ;o‘
81 S ria 32" (1+ (nil) - (niQ)) jpjp—i—%jp;afap} A
= R+ |:_2fTﬁfﬁa;T;a _ ﬁ 0% — gf[aﬁ;a]f[aﬂ;a]
2
e gy ]} A

and using (2.40) gives

(Gvu - Gvu) = - (QfT(Vfu)a;T;a + 2 frswyia
1
- JMV;QJWM;U+ fal/;afw;a + §Jwa;vfa0;u

T « 1 lo} (6% 3 (e o
= Gupf Bfﬂ ;T;a_zlguu(fp fop) %o — Zgwf[oﬁ;a]f[ B; ]

3272 1672

87" fr(vip) — mjuju + mgwj”jp) Ayt (2.67)
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From (2.43) we can define an “effective” energy momentum tensor Tw which applies

when G, is used in the Einstein equations and £,, =0,

- " 1 - -
87TTuu = 2 (fl/ fa,u_Z guufp fap) - (Gu,u - Guu)- (268)
Substituting (2.63,2.47) into (2.66) gives

o o —3/2
R = Toua + O,

1 N N N 8t . a—1/2
= (§(fw; = o) ia T m][l«u])ﬂﬂ\b 2
3 81

e a a . A—1/2
— (Ef[u,u,a]; + f wvsee T f TR + —<n_1)][y,u]> \/§ZAb ...

= (;f[vu,a};a+2fau;[v;a] =2/ ijso) — 87(25”__1)2) j[”:ﬂ]) ﬂiAgl/Q e (2:69)

As we have already noted in §2.2 and §2.3, the A; in the denominator of (2.67,2.69)
causes our Einstein and Maxwell equations (2.43,2.47,2.48) to become the ordinary
Einstein and Maxwell equations in the limit as w. — oo, |A,| — 00, Ay — 00, and it
also causes the relation f,, ~ F,, from (2.41) to become exact in this limit. Let us
examine how close these approximations are when A, ~ 10%cm™2 as in (2.12).

We will start with the Einstein equations (2.43). Let us consider worst-case values
of Gw— G, accessible to measurement, and compare these to the ordinary electro-
magnetic term in the Einstein equations (2.43). If we assume that charged particles

retain flo~@Q/r? down to the smallest radii probed by high energy particle physics

experiments (107*7cm) we have,

|froa/frol? /Ay~ 4/A, (10717)? ~ 10772, (2.70)

[floaa/flol/As ~ 6/ (10717)2 ~ 1077 (2.71)
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So for electric monopole fields, terms like f7,.4f% .0 A; " and fo7 fr (. 0.0y " in (2.67)
must be < 10732 of the ordinary electromagnetic term in (2.43). And regarding j™ as
a substitute for (1/47)f“7., from (2.47), the same is true for the j, terms. For an

electromagnetic plane-wave in a flat background space we have

A, = Aesin(kaz®) |, e =—1 , k%, = k%, =0, (2.72)

f,,ﬂ = 214[#,1,] = 2AE[M/€,,]COS(]€O¢:L‘O‘), ja =0. (2.73)

Here A is the magnitude, £ is the wavenumber, and €* is the polarization. Sub-
stituting (2.72,2.73) into (2.67), all of the terms vanish for a flat background space.
Also, for the highest energy gamma rays known in nature (10*°eV, 1034Hz) we have

from (2.12),

|froa/flol? /A~ (E/he)® /Ay ~ 10710, (2.74)

|froaa/flol /A~ (E/he)® /Ay ~ 1071, (2.75)

So for electromagnetic plane-wave fields, even if some of the extra terms in (2.67)
were non-zero because of spatial curvatures, they must still be <1071¢ of the ordinary
electromagnetic term in (2.68). Therefore even for the most extreme worst-case fields
accessible to measurement, the extra terms in the Einstein equations (2.43) must all
be <1071¢ of the ordinary electromagnetic term.

Now let us look at the approximation f,,~F,, from (2.41), and Maxwell’s equa-
tions (2.47,2.48). From the covariant derivative commutation rule, the cyclic identity

2Ry j7a)u = Rupuar, the definition of the Weyl tensor C, -, and the Einstein equations
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Ry, = —=Agy, + (f?)... from (2.43) we get

1
2fa1/;[u;oc} = RTV,u,ozfaT + RTa,uafTV = §Rlx,u,a’rfa7— + RTprV
_ 1 ar A apr 2 o 7] _pr
1 (n—2)A 5
= —f7 R 2.
T Car+ T2 () 276)

Substituting (2.35) into the antisymmetric field equations (2.32) gives
fou = Fop+ RuuV2i, 22+ (N, (2.77)
and using (2.69,2.76) we get

Afm 87{:1_1)2).7’[% +(f3)) ALY .(2.78)

2(n—2)
(1)

where ¢;,,, = (Levi—Civita tensor), C,,, = (Weyl tensor), and

fl/u = Vu"’(e[T,a]EuuTa+faTCaTV,u+

1 vpo 2 T
Or = Jfmas™ e = =50 vpa- (2.79)

The 9[7706}5”,[“/\? term in (2.78) is divergenceless so that it has no effect on Am-
pere’s law (2.47). The f,,A/Ay term is ~ 107122 of f,, from (2.3,2.12). The (f3)A;"
term is <107% of f,, from (2.37). The largest observable values of the Weyl tensor
might be expected to occur near the Schwarzschild radius, r, = 2Gm/c?, of black
holes, where it takes on values around r,/r®. The largest value of r,/r® would occur

near the lightest black holes, which would be of about one solar mass, where from

(2.12),

00101 1 1 C2 2 _77
Ab AbT’g Ab <2Gm@ ( 8 )

And regarding j7 as a substitute for (1/47)f*7., from (2.47), the jj, A," term is
< 10732 of f,, from (2.71). Therefore, the last four terms in (2.78) must all be
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<1072 of f,,,. Consequently, even for the most extreme worst-case fields accessible
to measurement, the extra terms in Maxwell’s equations (2.47,2.48) must be <1032
of the ordinary terms.

The divergenceless term 9[7@]5,4[‘1Ag1 of (2.78) should also be expected to be
<1072 of f,, from (2.70,2.71,2.79). However, we need to consider the possibility
where 6. changes extremely rapidly. Taking the curl of (2.78), the F,, and jj
terms drop out,

2(n—2)A
(n—=1)

Contracting this with Ape??”#/2 and using (2.79) gives,

Svpo) = (9T;a;[a e+ (" Corfop) o) + fopo) + (f 3’)> At

4(n—2)A

1
IN 0P = _29[,0‘0}_0 —gPoVH(FOTCOL Y
b ot 25 (f vu)o] (n—1)

0° + (f7)...

Using 0., = 0 from the definition (2.79), the covariant derivative commutation rule,
and the Einstein equations R,,=—Ag,, + (f?)... from (2.43), gives 07.,, = R,,0" =
—0,A+ (f¥)..., and we get something similar to the Proca equation[52, 53],

(Bn—T)A
(n=1)

1

b+ () 5y (281)

5 N,

1
0, = (‘ Opioi” + 507 (f* Carpu) o] +
Here we are using a (1, —1,—1, —1) metric signature. Equation (2.81) suggests that
6, Proca-wave solutions might exist in this theory. Assuming that the magnitude
of Cyryy is roughly proportional to 6, for such waves, and assuming that f,, goes
according to (2.78) with F),, =0, the extra terms in (2.81) could perhaps be neglected

in the weak field approximation. Using (2.81) and A, ~ —A, = C,w?l% from (2.12),

such Proca-wave solutions would have an extremely high minimum frequency

Whroca =V 2Ny = /20, W2lp ~ 10%rad/s, (2.82)
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where the cutoff frequency w, and C, come from (2.13,2.14).

There are several points to make about (2.81,2.82). 1) A particle associated
with a 0, field would have mass iwpyocqa, Which is much greater than could be pro-
duced by particle accelerators, and so it would presumably not conflict with high
energy physics experiments. 2) We have recently shown that sin[kr—wt] Proca-wave
solutions do not exist in the theory, using an asyptotically flat Newman-Penrose
1/r expansion similar to [54, 55]. However, it is still possible that wave-packet
solutions could exist. 3) Substituting the & = 0 flat space Proca-wave solution
8,=(0,1,0,0)sin[wproct] and F,, =0 into (2.78,2.68,2.67), and assuming a flat back-
ground space gives Ty = —2 /Ay < 0. This suggests that Proca-wave solutions might
have negative energy, but because sin|kr —wt] solutions do not exist, and because
of the other approximations used, this calculation is extremely uncertain. 4) With
a cutoff frequency w.~ 1/lp from (2.13) we have wppoeq > w, from (2.82,2.13,2.14),
so Proca-waves would presumably be cut off. More precisely, (2.82) says that Proca-
waves would be cut off if w,>1/(Ip\/2C., ). Whether w, is caused by a discreteness,
uncertainty or foaminess of spacetime near the Planck length[56, 57, 58, 59, 60], or
by some other effect, the same w, which cuts off A, in (2.12) should also cut off very
high frequency electromagnetic and gravitational waves, and Proca-waves. 5) If wave-
packet Proca-wave solutions do exist, and they have negative energy, it is possible
that 0, could function as a kind of built-in Pauli-Villars field. Pauli-Villars regulariza-
tion in quantum electrodynamics requires a negative energy Proca field with a mass
hwproca that goes to infinity as w. — 00, as we have from (2.82). This idea is supported

by the effective weak field Lagrangian derived in Appendix J, and is discussed more
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fully in Appendix K. 6) As mentioned initially, it might be more correct to take the
limit of this theory as w. — oo, |A,| = 00, Ay — 00, as in quantum electrodynamics.
In this limit (2.81,2.82) require that 6, — 0 or wWpyee, — 00, and the theory becomes
exactly Einstein-Maxwell theory as in (2.15). 7) Finally, we should emphasize that
Proca-wave solutions are only a possibility suggested by equation (2.81). Their ex-
istence and their possible interpretation are just speculation at this point. We are

continuing to pursue these questions.
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Chapter 3

Exact Solutions

3.1 An exact electric monopole solution

Here we present an exact charged solution for this theory which closely approximates
the Reissner-Nordstrém solution[61, 62] of Einstein-Maxwell theory. The solution
is derived in Appendix N, and a MAPLE program[63] which checks the solution is

available. The solution is

1
ds® = cadt® — P dr® — ér*df* — er’sin®0de®, (3.1)
1 = 5—2, V=N =r%sinf, \/—g=cér’sin0, (3.2)
Q AM  4A _ Q*V A

Foy = —Ay=—]1 ——+2(c—-1- 1—— .

o1 0 r2 * AbT3 3Ab * ¢ Ab7"4 Ab ’ (3 3)
oM Ar? Q¥ A

= 1- — 1—— A4
¢ T 3 T ( Ab> ’ (3:4)

where (') means d/9r, and ¢ and V are very close to one for ordinary radii,

R R o Q) 207\

cC = 1— AbT4 =1- Abr4 e — [i!]24i<2i_1) (Ab’l“4) ) (35)
' rhy T Q? (2i)! 202\’
] (/T%dr ) 3) ~  one T A D @) (Abwi)  (36)

28




and the nonzero connections are

f%o = aa2’é2 - 41??; ) f?o = f‘81 = % J f‘h = —2_3”

f%z = fgl = f?:a = fgl = %7 (3.7)
I, =—ar , Iy = —arsin?0 |, T3, =13, =cotf , '3, = —sinfcos,

1~1(2)2 = _fgo = ~?)3 = _fgo = av 296 ﬂo = _f(ln = _—2a\/§iQ

VA VA TS

With A, =0,A, = A we get the Papapetrou solution[46, 47] of the unmodified
Einstein-Schrodinger theory. In this case the M/Ayr? term in (3.3) would be huge from
(2.3), and the Q?/r? term in (3.4) disappears, which is why the Papapetrou solution
was found to be unsatisfactory[46]. However, we are instead assuming A,~—A, from
(2.12). In this case the solution matches the Reissner-Nordstrém solution except for
terms which are negligible for ordinary radii. To see this, first recall that A /Ay~ 107122

from (2.3,2.12), so the A terms are all extremely tiny. Ignoring the A terms and

keeping only the O(A; ") terms in (3.3,3.4,3.5,3.6) gives

B Q 4M 40Q)? L
Fy = 2 1+Abr3 W + O(A,), (3.8)
. Q M 40Q)* 9
AO - r 1 + AbTB - 5Ab7a4 + O(Ab )7 (39)
B 2IM Q2 Q2 .
a = 1_7+F|:1+10Ab7”4 +O<Ab ), (310)
Q* )
A we Rl Ul (3.11)

For the smallest radii probed by high-energy particle physics we get from (2.37),

Q2

i 10796, (3.12)
T

The worst-case value of M/ Ayr? might be near the Schwarzschild radius r, of black
holes where 7 =71, =2M and M/Ayr® =1/2A,r?. This value will be largest for the
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lightest black holes, and the lightest black hole that we can expect to observe would

be of about one solar mass, where we have

M 1 1 A\’
il — ~10777. 3.13
AbT’s 2Ab?“§ 2Ab (QGm@> ( )

Also, an electron has M = Gm./c* = 7 x 107°%cm, and using (2.12) and the smallest
radii probed by high-energy particle physics (10717em) we have

M 7 x 10756

—70
A ™ Tomgo T~ 107 (3.14)

From (3.12,3.13,3.14,2.3,2.12) we see that our electric monopole solution (3.1-3.4)
has a fractional difference from the Reissner-Nordstrom solution of at most 1075¢
for worst-case radii accessible to measurement. Clearly our solution does not have
the deficiencies of the Papapetrou solution[46, 47| in the original theory, and it is
almost certainly indistinguishable from the Reissner-Nordstrom solution experimen-
tally. Also, from (6.142-6.147) the solution is of Petrov Type-D. And the solution
reduces to the Schwarzschild solution for Q= 0. And from (3.8-3.11) we see that the
solution goes to the Reissner-Nordstrom solution exactly in the limit as A, — oo.

The only significant difference between our electric monopole solution and the
Reissner-Nordstrom solution occurs on the Planck scale. From (3.1,3.5), the surface

area of the solution is[64],

T 2m 2 2
) = / d@/ dp\/Goa0sg = A2 = dmr?y |1 — Aci‘l' (3.15)
0 0 b

<surface

area
The origin of the solution is where the surface area vanishes, so in our coordinates

the origin is not at r= 0 but rather at

ro = V/Q(2/A)V4. (3.16)
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An alternative coordinate system is investigated in Appendix P where the origin is
at p=0, but it is less satisfactory in most respects than the one we are using. From
(2.36,2.12) we have rg~1p~10733cm for an elementary charge, and ro < 2M for any
realistic astrophysical black hole. For Q/M <1 the behavior at the origin is hidden
behind an event horizon nearly identical to that of the Reissner-Nordstrom solution.
For /M > 1 where there is no event horizon, the behavior at the origin differs
markedly from the simple naked singularity of the Reissner-Nordstrom solution. For
the Reissner-Nordstrom solution all of the relevant fields have singularities at the
origin, with goo~@Q?/72, Ag=Q/r, Fou=Q/r%, Roo~2Q*/r® and Ry, ~2/r?. For our
solution the metric has a less severe singularity at the origin, with g1 ~—+/r/y/1 — 0.

Also, the fields N,,, N =N, A,, /=9"", /=9 iy V—99"", /—G9u,, and the

(A9l

functions “a” and V all have finite nonzero values and derivatives at the origin,
because it can be shown (see Appendix O) that V(ro) = v/2 [[(1/4)]*/6/7T—2/3 =
1.08137. The fields F,,, fﬁy and \/—g 7~€W are also finite and nonzero at the origin,
so if we use the tensor density form of the field equations (2.28,2.47), there is no
ambiguity as to whether the field equations are satisfied at this location.

Finally let us consider the result from (2.37) that | f“aAgl/ 2

| < 10733 for worst-case
electromagnetic fields accessible to measurement. The “smallness” of this value may
seem unappealing at first, considering that ¢** and f*v/2 iA;l/ ? are part of the total
field (\/—_N/\/—_g)]\ﬂ”“:g’“’—l—f’“’\/52'/\;1/2 as in (2.23). However, for an elementary
charge, | f“”A;l/ 2\ is not really small if one compares it to ¢g"” — n*” instead of g"”.

Our charged solution (3.1,3.2,3.4) has ¢"°~1+ 2M/r+ Q*/r* and fo'~Q/r?. So for

an elementary charge, we see from (2.36,2.12) that |f01A;1/2| ~@Q?/r? for any radius.
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3.2 An exact electromagnetic plane-wave solution

Here we present an exact electromagnetic plane-wave solution for this theory which

is identical to the electromagnetic plane-wave solution in Einstein-Maxwell theory,

sometimes called the Baldwin-Jeffery solution[65, 66, 67]. We will not do a full deriva-

tion, but a MAPLE program|[63] which checks the solution is available. We present

the solution in the form of a pp-wave solution[68], and a gravitational wave compo-

nent is included for generality. The solution is expressed in terms of null coordinates

2,y u=(t=2)/V2 v=(t+2)/V2,

where

my

f;w

-1 0 00
0 -1 00
0 0 H1
0 0 10

241, = 24k = V2

= 2[ + A

0 0 0f
0 0 0f,
VI =2 ,

0 0 00
~fo =f, 00

00 —f, 0

00 —f,0

fofy 00

00 0 0

— (0,0,—1,0), A, =(0,0,4,0), A=—V2zf,+yf,),

2(hya® + by — hoy?) +2(f7 + [) (2 + ¢),

h+£U2 + hyxy — h+y2 + (yf:c - $fy)2>
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(3.19)
(3.20)
(3.21)
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and the nonzero connections are

10H -, 10H -, 190H 20(f2+f)
20x’ ¥ 20y ¥ 20u A, Ou
10H 2 0f, -, 10H 2 0f,
20r VA ou N 20r A, Ou
10H 2 0f, =, 10H  2i 0f,

i, = —=—— S v
23 20y A, Ooul o F 28y+\/A_b8u

(3.23)

Here h, (u), hy(u) characterize the gravitational wave component, f,(u), f,(u) char-
acterize the electromagnetic wave component, and all of these are arbitrary functions
of the coordinate u = (t — 2)/v/2.

For the parameterization (3.17-3.20), it happens that ﬁuu = R, and the elec-
tromagnetic field is a null field[68, 66] with f?,f*, = det(f*,) = 0. For this case,
as shown in §6.1, all of the higher order terms in (2.34,2.35,2.43) vanish so that
Fo=fuw= N[W]Alb/ 2 / v2i and our Einstein and Maxwell equations are identical to
those of Einstein-Maxwell theory. Maxwell’s equations (2.47,2.48) are satisfied auto-

matically from (3.18,3.17), and the Einstein equations reduce to,
) q
0 = R33 + Ab(Ngg - 933) = T + 7 - Q(fm + fy) (324)

This has the solution (3.22,3.21). In Appendix Q the solution above is transformed to
ordinary x,¥, z,t coordinates, and also to the alternative x,y, u, v coordinates of [66].
The solution has been discussed extensively in the literature on Einstein-Maxwell
theory|[65, 68, 66, 67] so we will not interpret it further. It is the same solution which
forms the incoming waves for the Bell-Szekeres colliding plane-wave solution[67], al-
though the full Bell-Szekeres solution does not satisfy our theory because the electro-

magnetic field is not null after the collision.
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Chapter 4

The equations of motion

4.1 The Lorentz force equation

A generalized contracted Bianchi identity for this theory can be derived using only

the connection equations (2.55) and the symmetry (2.8) of fﬁ‘u,
(V=NN""Ro + V=NN""R),), — V-NN""R,, = 0. (4.1)
This identity can also be written in a manifestly covariant form
(V=-NN""Rox + V-NN"""R),),, — V=-NN""R,.1 =0, (4.2)
or in terms of ¢*7, f" and CNJW from (2.4,2.22,2.40),

o 3 op P ac P =
Gu;a = <§f pR[UPJ/] + f ;CVR[UV]) \/§ZAb 1/2- (43)

The identity was originally derived[3, 7] assuming j¥ = 0 in (2.55), and later ex-
pressed in terms of the metric (2.4) by [23, 43, 44, 37]. The derivation for j¥#0 was

first done[45] by applying an infinitesimal coordinate transformation to an invariant
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integral, and it is also done in Appendix E using a much different direct computa-
tion method. Clearly (4.1,4.3) are generalizations of the ordinary contracted Bianchi
identity 2(y/=g R"\) ,—/~9 9""Rovx =0 or G7, =0, which is also valid in this theory.

Another useful identity[23] is derived in Appendix A using only the definitions

(2.4,2.22) of g, and f,,,

<N(MV) - %&ijp)yH = <%fUpN[UP,V} =+ fap;UN[pu]) \/§ZA21/2 (44)

The ordinary Lorentz force equation results from taking the divergence of the

Einstein equations (2.42) using (4.3,2.47,2.32,4.4,2.21)

o 3 op P -0 SA— 1
8775 = (57 Rigput + 471 Riou ) V2iky 2 4 Ay (VU = SOUN ) (45)

_ <4ﬂja7é[ay] _Ab%fapN[opM)\/ﬁiAgl/Q+Ab<N(NV)_%5’V‘N5>W (4.6)

= (47Tja7é[au]+Abfpa;pN[gy])\/§iA;1/2 (4.7)
= 477 (Ri) + AN V210, (4.8)
— 16757 A, (4.9)
T7, = Foj° (4.10)

See Appendix H for an alternative derivation of the Lorentz force equation. In Ap-
pendix L. we also show that the Lorentz force equation and the continuity equation
can be derived from the Klein-Gordon equation for spin-0 fields. Note that the co-
variant derivatives in (4.2,4.3,4.4,4.10) are all done using the Christoffel connection

(2.20) formed from the symmetric metric (2.4).

35



4.2 Equations of motion of the electric monopole

solution

Here we calculate the equations of motion when one body is much heavier than the
other so this body remains approximately stationary and is represented by the charged
solution (3.1-3.7). We ignore radiation reaction effects. The Lorentz-force equation

(4.10) for the classical hydrodynamics case is

du® dz”
a a v vo_
Q2F* N + I v, u e (4.11)

The stationary and moving bodies have masses M, M, and charges ), (). We are
using d\ = ds/M, instead of ds because the unitless parameter A is still meaningful
for the null geodesics of photons where ds — 0 and M; — 0. Using the metric (3.1)
and the relation (r2¢)’=2r/¢ from (3.5), the non-zero Christoffel connections (2.20)

are

ac, . (ac) (ac) 1
F(1)0 = 3(61’0)/ ) I‘(1)0 = % ) Fil - - 2a¢ F%Z = F?i’) = E7 (412>
[ = —ar , T3, = —arsin? |, T's; =cotf , '3, = —sinfcos¥.
The equations of motion (4.11) are then
du”  (ac) . ac(ac)’
y ¢ _ _ r2 02 20, $2 t2
acQoFy1u o 5oz U aru arsin“0u® + 5 U (4.13)
T
0 = % + @urue — sin fcosd u®?, (4.14)
d o) 2%\/
0 = d—u)\ + % u"u® + 2cotf u’u?, (4.15)
QQFOl dut (aé)’ t
T = — "u’. 4.16
ac A ac (4.16)
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For motion in the equatorial plane we may put v’ =0, §=7/2, and (4.14) is identically

satisfied. Then from (4.15) we get

1 d(u®r?e)
0 = —/———+-— 4.17
r2¢ d\ (4.17)

u’r’¢ = (constant) = L = (angular momentum). (4.18)

From (4.16,3.3) we get

1 (d(utae)

/o 1 d =
0= (D 1 Qg ) = L (a4 uy) (4.19)

u'aé + QoA = (constant) = E = (total energy). (4.20)
Recalling that d\ = ds/M, and u? =0, §=m/2 we also have

1
M3 = utu, = acu® ——u"?—értu??, (4.21)
ac

Eliminating ¢ and A from (4.21) using (4.18,4.20) gives

d 2
MZ2aé = (aé)*u'*— (—ru‘b) —a®r*u®? = (E — QyAp)* — (

dr L \? alL?
do

This can be rewritten as an integral

_ Ldr/r?
" /é\/(E — QQ2A0)?—al?/r? — MQQ(I@' (4.23)

For Ay — oo, a =1 we have flat-space electrodynamics, and the integral can be
done analytically. For A, — oo we have Einstein-Maxwell theory, and the integral
becomes an elliptic integral. For a finite A, the integral is more complicated, but
using (3.9,3.10,3.11) for Ay, a, ¢ and neglecting powers higher than 1/r* also leads

to an elliptic integral. The time dependence can be obtained using (4.18,4.20) to get

dt/de = u'/u® = (r’¢/L)(E — QyAp)/aé = (E — QuAo)r?/al  (4.24)
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so that from (4.23),

(4.25)

/ (E — QQA())CZ’I"
at\/(E — QaAg)2—al?/r? — M2ac

We can also obtain the results (4.23,4.25) using the Hamilton-Jacobi approach as

in [75], p. 94-95 and 306-308. From (4.21,3.1), the Hamilton-Jacobi equation is
a5 S
M} = g* (aﬂ—i-@z u)( + Q24 ) (4.26)

1 /0S8 > /08 1 /0S\?

The solution is

S =—FEt+ Lo+ S.(r Sy —/ \/E Q2A0)?—al?/r? — MZac. (4.28)

Then (4.23) is obtained from the equation 0S/9L = (constant), and (4.25) is obtained
from the equation 0S/0F = (constant).

Let us analyze the special case L=0()>, =0 using the effective potential method of

(69, 66]. From (4.22,4.18) and the definitions E = E/M,, ds = Mad\ we have

- dr
¢ = E*— : 4.29
ac ( ds) (4.29)
This equation can be expressed as a non-relativistic potential problem,
1/dr\*> E?*-1 -
—| = = -V 4.30
2 (ds) 2 ’ (4:30)

where (dr/ds)?/2 corresponds to the kinetic energy per mass, and V is the so-called

“effective potential”,

(4.31)



Since V(ro) = v2[[(1/4)]/6y/7 —2/3 = 1.08137, we can assume that V = 1 for

present purposes, and the effective potential becomes,

-~ 2 2

2 r r2 Aprt

1
3" (4.32)

Let us consider the case for elementary particles where () > M. This case is
more interesting than astronomical objects because there is no event horizon to hide
the behavior close to the origin at 79 = (2Q%/A)Y* = 3.16 x 10~3*em where ¢ = 0.
Assuming an electron charge and mass we have () = Q. = e\/m =+/alp=1.38 x
1073*em and M =Gm,/c®?=Tx10"%5cm. In this case the mass term in “a” is smaller

that the charge term for r < Q?/2M =1.36 x 10~'3¢m, which is close to the classical

electron radius. The following table shows the rough behavior of V,

V vs. r for three Q /Q. values

Our charged solution Reissner-Nordstrom solution

r/Q\Q/Q. 265 1.06 1.86 .265 1.06 1.86

1.68 —.05602 — — .01250 .20000 .61250

2.66 —.00519 —.15032 — .00500 .08000 .24500

3.76 —.00002 —.00478 —.05315 .00250 .04000 .12250

4.60 .00055  .00769  .01525 .00166 .02666 .08166 (4.33)

5.32 .00062  .00953  .02611 .00125 .02000 .06125 '

5.94 .00060  .00937  .02722 .00100 .01600 .04900

10 —.00001  .00000  .00001 —.00001 .00000 .00001

10% <0 <0 <0 <0 <0 <0

00 .00000  .00000  .00000 .00000 .00000 .00000

For Q = Q. we find that V has a zero at 79/Q. = (2/A,Q?)/* = 2.3, then it rises
quickly to a maximum of ~ .00953 at r/Q. = 5.3, then it falls slowly to 0 near the
classical electron radius calculated above, and it remains slightly below 0 as r — co
where it goes to 0. Radii where V = (E—1)/2 are turning points where the radial

motion reverses, so a falling body would bounce back only if (E—1)/2 < .00953.
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It is the ¢ term that causes V to have a zero at ro/Qe = 2.3, which limits the
potential for small radii. Particles falling into the Reissner-Nordstrom solution with
L=0, @> M, ¢=1 would always bounce back near r ~ Q). ~ [p regardless of their
energy, because the potential goes to infinity as » — 0. This is a clear difference
between our charged solution and the Reissner-Nordstrom solution, although it is
unclear whether it has any significance from an experimental viewpoint.

Now let us consider a massless particle with M;= L= (), =0 falling into a body

with > M. Setting My=L=Q2=0 in (4.25) gives

{ = / dr _ / dr L dr—acdt. (434)
i ) T oM Q@) T Rt

Here the ¢ term causes a pole at ro = (2Q%/A;)/* = 3.16 x 10~**¢m. Ignoring the
“a” term, one gets an elliptic integral which evaluates to some finite value when the
lower limit is set to rg. This means that a particle would take a finite time to reach
the radius rq, at which point it presumably disappears. For the Reissner-Nordstrom
solution with ¢ =1, the integrand becomes ~ 7?/Q? near r =0, so a particle would
take a finite time to reach r=0. Therefore, in contrast to the massive case, a massless
neutral particle of any energy will fall into the singularity in a finite time for either

our charged solution or the Reissner-Nordstrom solution.
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4.3 The Einstein-Infeld-Hoffmann equations of mo-
tion

Here we derive the Lorentz force from the theory using the Einstein-Infeld-Hoffmann
(EIH) method[70]. For Einstein-Maxwell theory, the EIH method allows the equations
of motion to be derived directly from the electro-vac field equations. For neutral par-
ticles the method has been verified to Post-Newtonian order[70], and in fact it was the
method first used to derive the Post-Newtonian equations of motion[71]. For charged
particles the method has been verified to Post-Coulombian order[72, 73, 74], meaning
that it gives the same result as the Darwin Lagrangian[53, 75] (see also Appendix F).
The EIH method is valuable because it does not require any additional assumptions,
such as the postulate that neutral particles follow geodesics, or the ad hoc inclusion
of matter terms in the Lagrangian density. When the EIH method was applied to
the original Einstein-Schrodinger theory, no Lorentz force was found between charged
particles[9, 10]. The basic difference between our case and [9, 10] is that our Einstein
equations (2.43) contain the familiar term f,” f,,—(1/4) g, f*° f5,. This term appears
because we assumed A, # 0, A, # 0, and because of our metric definition (2.4) and
(2.34). With this term, the EIH method predicts the same Lorentz force as it does for
Einstein-Maxwell theory. Also, it happens that the extra terms in our approximate
Einstein and Maxwell equations due to (2.67,2.78) cause no contribution beyond the
Lorentz force, to Newtonian/Coulombian order. The basic reason for the null result of
9, 10] is that they assumed Ay =0 and g,, = N, so that every term in their effective

energy-momentum tensor has “extra derivatives”[76]. For the same reason that [9, 10]
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found no Lorentz force, the extra derivative terms in our effective energy-momentum
tensor (2.68,2.67) cause no contribution to the equations of motion.

In §4.1 we derived the ordinary Lorentz force equation by including source terms
in our theory, and taking the divergence of the Einstein equations. Here we derive the
Lorentz force using the EIH method because it requires no assumptions about source
terms, and also to show definitely that the well known negative result of [9, 10] for the
unmodified Einstein-Schrodinger theory does not apply to our theory. We will only
cover the bare essentials of the EIH method which are necessary to derive the Lorentz
force, and the references above should be consulted for a more complete explanation.
We will also only calculate the equations of motion to Newtonian/Coulombian order,
because this is the order where the Lorentz force first appears.

With the EIH method, one does not just find equations of motion, but rather one
finds approximate solutions g,, and f,, of the field equations which correspond to a
system of two or more particles. These approximate solutions will in general contain
1/rP singularities, and these are considered to represent particles. It happens that
acceptable solutions to the field equations can only be found if the motions of these
singularities are constrained to obey certain equations of motion. The assumption
is that these approximate solutions for g,, and f,, should approach exact solutions
asymptotically, and therefore the motions of the singularities should approximate
the motions of exact solutions. Any event horizon or other unusual feature of exact
solutions at small radii is irrelevant because the singularities are assumed to be sep-
arated by much larger distances, and because the method relies greatly on surface

integrals done at large distances from the singularities. Some kind of exact Reissner-
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Nordstrom-like solution should probably exist in order for the EIH method to make
sense, and the charged solution (3.1-3.7) fills this role in our case. However, exact
solutions are really only used indirectly to identify constants of integration.

The EIH method assumes the “slow motion approximation”, meaning that v/c<

1. The fields are expanded in the form[70, 72, 73, 74],

G = Muw + Y= N Vop/2, (4.35)
Yoo = 270" + 4700A" - - (4.36)
Yor = 3Y0rA® 4 570EN° - - (4.37)
Ve = 4y (4.38)
Ay = AN+ 4ApN" . .. (4.39)
Ay = AN F AN (4.40)
Joro = 2foeX® 4+ aforX' (4.41)
fie = sfuX’ +sfu). .. (4.42)

where A ~ v/c is the expansion parameter, the order of each term is indicated with
a left subscript[9], n,, = diag(1,—1,—1,—1), and Latin indices run from 1-3. The
field 7,, (often called h,, in other contexts) is used instead of g,, only because it
simplifies the calculations. Because A ~ v/c, when the expansions are substituted
into the Einstein and Maxwell equations, a time derivative counts the same as one
higher order in A\. The general procedure is to substitute the expansions, and solve
the resulting field equations order by order in A, continuing to higher orders until a
desired level of accuracy is achieved. At each order in A, one of the ;v,, terms and
one of the ;f,, terms will be unknowns, and the equations will involve known results
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from previous orders because of the nonlinearity of the Einstein equations.

The expansions (4.36-4.42) use only alternate powers of A essentially because the
Einstein and Maxwell equations are second order differential equations[71], although
for higher powers of A, all terms must be included to predict radiation[72, 73, 74].
Because A ~ v/c, the expansions have the magnetic components A, and fi; due to
motion at one order higher in A than the electric components Ay and fp;. As in
(72, 73, 74], for and fix have even and odd powers of A respectively. This is the
opposite of [9, 10] because we are assuming a direct definition of the electromagnetic
field (2.22,2.35,2.78,2.21) instead of the dual definition f*’ = e**7*N[,, /2 assumed
in [9, 10].

The field equations are assumed to be of the standard form

G = 811, where G, = Ry, — %gwgaﬁRaﬁ, (4.43)
or equivalently
Ry, = 875, where S, = Thy — %gwgaﬁ Tos. (4.44)

However, with the EIH method we must solve a sort of quasi-Einstein equations,

0 = G — 81T, (4.45)
where
o B 1 af z 1 o
G,ul/ = R,uy — 577,[“/77 Raﬁ, ij = S,LLV — §nuyn S@ﬁ- (446)

Here the use of 7,, instead of g, is not an approximation because (4.44) implies
(4.45) whether G u and T, w are defined with 7, or g,,. Note that the references use
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many different notations in (4.45): instead of éW others use I1,, /247, @, /24+A 0
or [LS: ] and instead of 877, others use —25,,,, —A,,, —Au or [RS:uv].

The equations of motion result as a condition that the field equations (4.45) have
acceptable solutions. In the language of the EIH method, acceptable solutions are
those that contain only “pole” terms and no “dipole” terms, and this can be viewed
as a requirement that the solutions should resemble Reissner-Nordstrom solutions

asymptotically. To express the condition of solvability we must consider the integral

of the field equations (4.45) over 2D surfaces S surrounding each singularity,

Y

lOu = % (lGuk’ — 87rﬂv”uk)nde. (447)

Here ny, is the surface normal and [ is the order in A. Assuming that the divergence of
the Einstein equations (4.43) vanishes, and that (4.45) has been solved to all previous

orders, it can be shown[70] that in the current order
(léuk — SWZTuk)Uc:O' (448)

Here and throughout this section “|” represents ordinary derivative[70]. From Green’s
theorem, (4.48) implies that ;C), in (4.47) will be independent of surface size and

shape[70]. The condition for the existence of an acceptable solution for 47, is simply
4C; =0, (4.49)

and these are also our three O(A\*) equations of motion[70]. The Cy component of

(4.47) causes no constraint on the motion[70] so we only need to calculate Gy, and

Tk
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At this point let us introduce a Lemma from [70] which is derived from Stokes’s

theorem. This Lemma states that
S
/ f(.“)kl”nkds =0 if f(u-)kl = —./—'.(.A.)lk, (4.50)

where F...)y; is any antisymmetric function of the coordinates, ny, is the surface nor-
mal, and S is any closed 2D surface which may surround a singularity. The equation
4C; =0 is a condition for the existence of a solution for 47v;; because 47v;; is found
by solving the O(\*) field equations (4.45), and 4C; is the integral (4.47) of these
equations. However, because of the Lemma (4.50), it happens that the 4v;; terms in
WG integrate to zero in (4.47), so that 4,C; is actually independent of 47;,. In fact
it is a general rule that C; for one order can be calculated using only results from
previous orders[70], and this is a crucial aspect of the EIH method. Therefore, the
calculation of the O(\*) equations of motion (4.49) does not involve the calculation
of 47k, and we will see below that it also does not involve the calculation of 5f;; or
1. fok-

The 4G, contribution to (4.47) is derived in [70]. For two particles with masses
my, my and positions &, &, the O(\) term from the integral over the first particle

is

5 1 [ o /1

where

r= V(E-8)E-8)- (4.52)

If there is no other contribution to (4.47), then (4.49) requires that §C; =0 in (4.51),
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and the particle acceleration will be proportional to a V(mims/r) Newtonian gravi-
tational force. These are the EIH equations of motion for vacuum general relativity
to O(\*), or Newtonian order.

Because our effective energy-momentum tensor (2.68) is quadratic in f,,,, and the
expansions (4.36-4.42) begin with A terms, the O(\?) — O(A\?) calculations leading
to (4.51) are unaffected by the addition of the electromagnetic terms to the vacuum
field equations. However, the 87 ﬂu’ik contribution to (4.47) will add to the 4(}%
contribution. To calculate this contribution, we will assume that our singularities
in f,, are simple moving Coulomb potentials, and that 6 =0, A =0. Then from
(2.78,4.41-4.42) we see that oFor = 2 for, and from inspection of the extra terms in
our Maxwell equations (2.47,2.48,2.78) and Proca equation (2.81), we see that these
equations are both solved to O(A?). Because (2.68) is quadratic in f,,, we see from
(4.41-4.42) that only o for can affect the O(\*) equations of motion. Including only
o for, our f,, is then a sum of two Coulomb potentials with charges @i, @2 and

positions &, & of the form

QAM = (2%07 07 07 O) ) QfOk = 22A[k‘|0] = — 2%k <453)
20 = P4+ ? ;Y =Qi/r Y =Qafre, (4.54)
o= J@-g)e-g) . p=1.2. (4.55)

Because (2.68) is quadratic in both f,, and g,,, and the expansions (4.36-4.42)
start at A? in both of these quantitites, no gravitational-electromagnetic interactions
will occur at O(A?). This allows us to replace covariant derivatives with ordinary

derivatives, and g¢,, with n,, in (2.68). This also allows us to replace T;w from
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(4.45,4.46) with the effective energy momentum tensor from (2.68),

§ . 1 0
87TTV;L = 2 (fl/ fo’ﬂ - an/ﬂfp fo’p)
T o T o « o « 1 o «
+<2f W ria + 21 frwila = fvial “ule + Fvlafon” + 5 ap f o

T (6] 1 loa [0 3 g (073 —
=™ 5% = o (7 fop)1 0= S fiostan 17 ]+<f4))Abl' (4.56)

This can be simplified by keeping only O(A*) terms. The terms 2f7(, f,) %o and
—1uf 7 f3%|rja vanish because (4.53) satisfies Ampere’s law to O(A?). The term
—(3/4)77Wf[05|a]f[”ﬂ|a] vanishes because (4.53) satisfies fi,g1a) = 24[3)01a] = 0. Also,
since time derivatives count the same as a higher order in A, we can remove the term
—fs1af  mle = —f03|0f0m‘0, and we can change some of the summations over Greek
indices to summations over Latin indices. The (f*) term will be O(\®) so it can
obviously be eliminated. And as mentioned above, only ,fo. contributes at O(\?).
Applying these results, and dropping the order subscripts to reduce the clutter, the

spatial part of (4.56) becomes,

8m 4Tsm = 2 (stme - %nsmfrofOr)
+ (2fa0f0(sm)|a + FOsiafom® + Fasf om — %ﬁsm(fTof0r)|a|a> Ayt (4.57)
= -2 (fOstm + %nsmf0rf0r>

1 -
+ (QanfO(s|m)|a - f03|af0m|a + an\sta\m + §nsm(f0rf0r)|aa) Abl- (458)
Note that o from (4.54) obeys Gauss’s law,

90|a\a = 0 (459)
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Substituting (4.53) into (4.58) and using (4.59) gives

§ 1
8m 4Ly, = —2 (30|ss0|m + insmwrs&w)
1 _
+ (290|a<P|s|m|a — PlslaPlmla T PlalsPlalm T 577sm(%0|r<ﬁ|r)a|a> At (4.60)
1
= =2 PlsP|m + §nsm90|r<10|r

_(90\590|a|m + Sp\r‘;0|r|s77am)|aA;1 + (Sp|a90\s\m + 90\1"90|r|a775m)|aA;1

1 _
= -2 <90|s90|m + gnsm%s@v) — 2(11sPlalim + LlrPirl(sNajm)jalNy - (4.61)

From (4.50), the second group of terms in (4.61) integrates to zero in (4.47), so it can
have no effect on the equations of motion. The first group of terms in (4.61) is what
one gets with Einstein-Maxwell theory[72, 73, 74], so at this stage we have effectively
proven that the theory predicts a Lorentz force.

For completeness we will finish the derivation. First, we see from (4.61,4.59) that
4T5m|5 =0. This is to be expected because of (4.48), and it means that the 87 4T5m
contribution to the surface integral (4.47) will be independent of surface size and
shape. This also means that only 1/distance?® terms such as 7, /1> or .z, /r* can
contribute to (4.47). The integral over a term with any other distance-dependence
would depend on the surface radius, and therefore we know beforehand that it must
vanish or cancel with other similar terms[70]. Now, ¢; :@/J|1i+ @/Jﬁ from (4.54). Because
%12- and wﬁ. both go as 1/ distance?, but are in different locations, it is clear from (4.61)
that contributions can only come from cross terms between the two. Including only

these terms gives,
814 T5, = —2 (VLU VR b+ Nem 0 - (4.62)
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Some integrals we will need can be found in [70]. With ¢ = 1/v/x%2* we have,

1/0¢ s = —1 1/0¢ ds = — 15 (4.63)
A |mTm - ) A laTtm - 3 am- .

Using (4.62,4.63,4.54) and integrating over the first particle we get,

1 ! T 1 ' 1,2 2,1 1,2
o [—87rT5m]nmdS = o / 2 (U2 + U+ T Bh 2 nndS  (4.64)
11
— 1Quie)(--1ry) = —1QukE). (9

Using (4.49,4.47,4.65,4.51,4.54) we get

0=4C; = —4 {Wmﬂ — myma aii (%) } - 4@1%21'(51) (4.66)
1
- i (O} -0 ()
= —4 {m1fi — mimsy 8(; (%) + Q1Q- 32 (%) } ; (4.67)
where
ro= V(& —-8)& - &) (4.68)

These are the EIH equations of motion for this theory to O(A?), or Newtonian/
Coulombian order. These equations of motion clearly exhibit the Lorentz force, and

in fact they match the O(A?) equations of motion of Einstein-Maxwell theory.
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Chapter 5

Observational consequences

5.1 Pericenter advance

Here we calculate the pericenter advance for a body with mass and charge Ms, Q)5
rotating around a more massive body with mass and charge M, (), which is represented
by the charged solution (3.1-3.7). We will use the effective potential method of [69, 66],
together with the Lorentz force equation (4.10,4.11) and the resulting equations of

motion calculated in §4.2. Using (4.22,4.18) and the definitions

QQ = QQ/MQ, f/ = L/MQ, E = E/MQ, dS = Mgd)\, (51)
we have
ac = (E — QyA0)*— dr\®_el’ (5.2)
N 2470 ds r2 ’

This equation can be expressed in the form of a non-relativistic potential problem,

1 /dr\> E?-1 -
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where (dr/ds)?/2 corresponds to the kinetic energy per mass, and V is the so-called

“effective potential”,

~ 1~ = al?  ac¢ (E?-1)

Using the expressions (3.9,3.10,3.11) for Ay, a, ¢ and keeping only terms which fall

off as 1/r* or slower we get

Ayr? 212 2 r r2  Aprt

Combining the powers of 1/r gives

f/gR VRNl VGR VRNQ VES
) (P-QQ*+@Q)  MI*  (QL*+Q2EQM—Q)/M)
vo— P . , (5.6)
r 27‘2 7‘3 2T4
where

Here —u/r is the combined Newtonian/Coulombian potential, and the term L2/2r?
is sometimes called the “centrifugal potential energy”. These terms characterize the
nonrelativistic Newtonian/Coulombian central force problem, and the associated or-
bits will be ellipses with a fixed pericenter. The additional terms f/gpw VGR, f/RNl,
Vana, Vig are due respectively to special relativity, general relativity, the Q%/r? term
of the Reissner-Nordstrom solution, and finally from our theory. All of these addi-
tional terms are small relative to the first terms for ordinary radii, and they can be
treated as perturbations of the Newtonian/Coulombian case. Setting dV /dr =0 gives

7

the radius “r¢” of a stable circular orbit. If a body is displaced slightly from rq it
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will oscillate in radius about r(, executing simple harmonic motion with proper time

radial frequency w, given by

wy = \/ [V /dr?],—,, .

(5.8)
Subtracting this from the proper time angular frequency from (4.18)
Wy = E/6T2 (59)
gives the pericenter advance,
Wp = Wy — Wy (5.10)
The derivatives of the effective potential are
o _ op (LP-Q3QP+QY) | 3ML 2AQ’L+Q(2EQM—Q)/Ny)
— + — . (5.11)
or r2 3 4 i
PV 2 3(E-QQP+QY)  12ML*  10(QL*+QREQ,M - Q)/My),
_ oty _ n (5.12)
or? r3 rd rd r6
For the Newtonian/Coulombian case we have
oV T =5
= — — - - L ']-
0 or r2 3 3 (pur ) (5.13)
which has the solution
To L?/u (5.14)
2V ou 302 L
N — =t — = . 5.15
“ \\ dr? re + ra re (5.15)
From (4.18) the orbital frequency using proper time is
L
wy =u’ = <. (5.16)
To



So for the Newtonian/Coulombian case there is no pericenter advance

Wy = Wy — wy = 0.

(5.17)

Each of the additional potential terms will have the uninteresting effect of changing

the dependence of the orbital parameters on the constants L and E. However these

terms will also have the more fundamental effect of introducing pericenter advance.

Here we will calculate the pericenter advance for each of the additional potential

terms, and compare these to the results to our theory.

Including the special relativistic term Vgg gives

ov. u L Q3Q* 1 - .
=T T e = e L Q)

0

which has the solution

o = (E2—Q§Q2)/u,

a2V 2u  3(1*—Q3Q?) L S
_ _ N _ = 1 —0202/2
Wr 2 TS) + Té 7”(2) \/( QQQ / )

So the pericenter advance caused by the special relativistic term Vgg is

_ G,

WpSR = Wy — Wr = 972

Including the general relativistic term Vg gives

_8\7_,u_i2 3MI2

or rz 3 r4

1 3 .
0 = ﬁ(,ur2 — L*r +3ML?).

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

This equation could potentially be solved by using the solution of a quadratic equa-

tion. However, we will instead find an approximation based on a perturbation of the

o4



Newtonian case. We assume that
rar = L?/u+ Arg. (5.24)

Assuming that Ary is small compared to L2 /i we can make the approximation

(L /4 Arg)™ ~ (L?/p + nArg)(L? /)"~ ', Substituting into (5.23) gives
0= pu(L?/p+2010) L2/ — L*(L? /4 Arg) +3ML* = L2 Arg+3ML%,  (5.25)

which has the solution

Arg = —3M, (5.26)
w, = \/g = \/—i—g - 37%2 — 12%1:2 = %\/—Zuro +3L2 — 12ML2/ry (5.27)
= %\/—2M(i2/u —3M) 4+ 3L2 — 12ML2(L?/ju 4 3M)(L?/ j1) 2 (5.28)
= 7%\/1 — 6uM/L? — 36 M2u2 /LA (5.29)
= w, (1 . 3’212”) . (5.30)

So the pericenter advance caused by the general relativistic term Vg is
WpGR = Wy — Wy = 3#%42@)(,5. (5.31)

The pericenter advance caused by the 1st Reissner-Nordstrom term Vzy; can be

derived from the calculations for the Vgg term by letting Q2Q% — —Q2,

2
w
WpRN1 = Wy — Wy = _Q2E2¢' (5.32)
Including the 2nd Reissner-Nordstrom term Vgzyo gives
oV po L* 0 2Q*L* 1 -
0= _ H_L :_< 3 [ 22L2> 5.33
or r2 73 rd 5\ " @ (5.33)



Again we assume that
ros = Pfu+ Aro (530
Substituting into (5.33) and using (L?/p + Arg)™* = (L?/p + nAre)(L?/p)" " gives

0 = w(L?/pu+3Ar0) (L3 /)% — LA(L?/u+ 2Ar0) L /i — 2Q* L (5.35)

= Arol*/p—2Q%*L2, (5.36)
which has the solution

Ary = 2uQ?/L?, (5.37)

2V 312 10 2]2 1 10Q2L2
Wy = Q6 —2purg + 3L2 + © (5.38)
drz o 2 2

= p\/—zu(LQ/u + Arg) + 3L2 + 10Q2L2(L2/p — 2Ar) (L2 /p) =3 (5.39)
0

o R B e gz a0 (5.40)

_ 2()2 4 4,4 8 ~ L 3Q2 ?

_ \/1 6202 E — 40Q4t I8 ~ - (5.41)
0

o, (1 + ?’Q; 2) . (5.42)

So the pericenter advance caused by the 2nd Reissner-Nordstrom term Vgzyo is

3Q% 1 wy

- (5.43)

WpRN2 = Wy — Wr = —

The pericenter advance caused by the Einstein-Schrodinger term Vgg can be de-
rived from the calculations for the 2nd Reissner-Nordstrom term Vgzpyo by letting
Q*L? = Q(2EQyM— Q) /Ay, except that wy = L/ér? from (5.9) instead of wy = L/

from (5.16). Ignoring the correction to ro = L?/p from (5.14) we have

L L 2,4
Wy = 5 5 7 ~ — (1+Q 8)7 (544)
rov/1—2Q /AbTO \/1—2Q2 14 /A L8 r3 AL
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and from (5.41),

o 2(1 . 3Q(2EQ. M — Q)u2> L [1 _ <3 _ 6EQ2M) @y (5.45)

2 A, LS T2 Q | ALS

T T

So the total pericenter advance caused by the Einstein-Schrodinger term Vg is

6EQM | 1\ Q% plwy
w = Wp—w,=(3—-—+ = | —. 5.46
pES o ( 0 ) Az (5.46)
Combining all of the calculations, the total pericenter advance comes to
WpSR  WpGR WpRN1 WpRN2 WpES
202 3uM 2 3022 6EO. M 2 2,2
wp Q@ 3M @ 3@ (g SEQM ) QU g
We 2L72 L? 2L72 LA Q L? ) LSA,

Here the special relativity term w,sr agrees with [75, 72, 77|, the general relativity
term w,gr agrees with [69, 78|, and the first Reissner-Nordstrom term w,prn; agrees
with [79, 80]. The wygs term is due to our theory. All of these calculations were
done by assuming nearly circular orbits. However the w,gr result can be shown to
be correct for arbitrary eccentricity[69] if we replace wy = L/r? from (5.16) with the

more general expression from Newtonian mechanics

EQ
Wy = : (5.48)
P vE( el
es = (eccentricity), (5.49)
as = (semimajor axis). (5.50)

This also true of wysgr, as can be seen from p.94 of [75], and it is probably true for
the other w, results as well. Also, using wy, = L/r? from (5.16) and (5.48) we can

reproduce the result (5.14) for nearly circular orbits

L~ /ur. (5.51)
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For a first test case we choose the Bohr atom with M = Mp, My = M,, ) =

—Q2=1Q.| because of its approximate physical relevance, and because the Einstein-

Schrodinger term will have the greatest effect at small radii. Using M(9eom) =

MG /2 QUeom) =Q(99) /G /c* and esu=cm®/%g'/?/s we have

M =

M,y =

[l
I

and

WpSR
Wo
WpGR
Wo
WpRN1
We
WpRN?2
We
WpES
We

6.67x10"%cm?/g-s?
Mp =1.67x 107 =1.24x107% 5.52
r x g( (3x10%0¢m/s)? ) 8 . (5.52)
6.67x10"%cm3/g-s?
_ —28 _ —56
M, =9.11 x 10 g( 100/ ) = 6.75 x 10~ %¢m, (5.53)
B 6.67x1078cm3/g- s? B
—Q2 = |Qc| = 4.8x10 10(2su\/ B 100cm)s)] = 1.38x10"*¢cm, (5.54)
ap = .529x 10 %em, (5.55)
10%%em ™2, (5.56)
(total energy)/Msy ~ 1, (5.57)
QQ.E  (1.38 x 1073em)? x 1 s
- = —2.81 x 10 5.58
My 6.75 x 10-%cm e (5.58)
Vi = V2.81 x 10-Bem x 529 x 10~8cm = 3.86 x 10~ Hem, (5.59)
cL  3x10%m/s x 3.86 x 10~ em
== (529X 10 5am)? =4.14 x 10"rad/ s, (5.60)
(1.38 x 10731em)? _5
= = 2.65 x 10 5.61
2(3.86 x 10-Lem)2(6.75 x 10-5cm)? S (5.61)
3% 2.81 x 107 Bem x 1.24 x 1072¢m -
= 3.86 % 10 Tem]? —=7.00 x 1074, (5.62)
(1.38 x 10731cm)? 8
= — = —6.36 x 10 5.63
2(3.86 x 10-1Lcm)? S (563)
3(1.38x 10 34cm)%(2.81 x 10~ Bem)?
= IO e ZELXA0Tem)” ) o g3, (5.64)

(3.86 x 10~1em)*
~6(1.38%x107*em)?(2.81x 107 P em)? x 1.24 x 10~°%em

=5.0x10"%.(5.65
(3.86 x 10~em)6 x 6.75 x 10~%6cm x 1056em 2 . (565)
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From (5.47,5.9), the pericenter advances are

wpsp = 2.65 x 107°w, = 1.10 x 10"%rad/s, (5.66)
wper = T7.00 x 107*wy = 2.90 x 10~*"rad/s, (5.67)
wprn1 = —6.36 x 107 %w, = —2.63 x 10"*'rad/s, (5.68)
wprne = —2.02 x 107w, = —8.36 x 10™*rad/s, (5.69)
wpps = 5.0 x 107%w, = 2.07 x 10" rad/s. (5.70)

For a second test case we choose M = M, because this is the smallest black
hole we can expect to observe, and the smallest black hole will create the worst-case
observable spatial curvature. We choose an extremal black hole with Q=M because
this is the worst-case charge which avoids a naked singularity, and we choose the
orbital radius to be r=4M because this is close to the smallest stable orbit. For the
second body we choose Q3 =0 and M, << M, so that My does not enter into the

equations. Using M (9¢™) = M (<95)G /c? we have

6.67x 10" 8cm?/g-s*

p o= M=Q=M,= 1.99><1033g( ) = 1.47x10°cm, (5.71)

(3x10%0¢cm/s)?
r = 4M =5.90x10°cm, (5.72)
Q2 = Ocm, (5.73)
Ay = 10%cm ™2, (5.74)
E = (total energy)/M, ~ 1, (5.75)
L = /pr =147 x 105cm x 5.90 x 105c¢m = 2.95 x 10°cm, (5.76)

cL 3 x10%%em/s x 2.95 x 10°cm

= = (5.90 % T0am)? = 2.55 x 10*rad/s, (5.77)

W¢:
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and

PSR _ ), (5.78)
We
WpGR 3 x 1.47 x 10°cm x 1.47 x 10°cm
—_— = = .747 5.79
We (2.95 x 105¢m)? ’ (5.79)
WpRN1 (147 X 105cm)2
—_— = - = —.125 5.80
We 2(2.95 x 10°cm)? ’ (5.80)
wprn2 _ 3(147 % 10°cm)?(1.47 x 105cm)? _ 186 (5.81)
We (2.95 x 10%cm)* S '
WpES 3(1.47 x 10°cm)?(1.47 x 10°cm)? s
= =214 x 107", 5.82
We (2.95 x 10%°¢m)6 x 10%6¢m—2 x (582)

From (5.47,5.9), the pericenter advances are

wpsr = 0wy = 0rad/s, (5.83)
wpar = T4Twy = 1.90 x 10*rad/s, (5.84)
wprn1 = — 125wy = —3.19 x 10%rad/s, (5.85)
wprne = —. 186wy = —4.74 x 10%rad/ s, (5.86)
wpps = 214 x 107wy = 5.46 x 10~ rad/s. (5.87)

Obviously wyrs is too small to measure for either of the test cases, with a frac-
tional difference from the Einstein-Maxwell result of < 1078, However, this result
is one more indication that the A-renormalized Einstein-Schrodinger theory closely

approximates Einstein-Maxwell theory.

5.2 Deflection and time delay of light

Here we calculate the deflection and time delay of light by assuming null geodesics in
the Lorentz force equation (4.10), and the charged solution (3.1-3.7). Null geodesics
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are found by letting My = ()2 =0 in the classical hydrodynamics Lorentz force equation
(4.11) from §4.2. We will find it convenient to rewrite the equations of §4.2 in terms
of the impact parameter “b” instead of “L” and “E”. The impact parameter is the
distance of closest approach of a line drawn from the initial » — oo asymptote of
the path, and it is where d¢/dt = 1/b would occur if the path was not bent. From

(4.18,4.20) the impact parameter is given by
b=L/E. (5.88)

Using (4.22) with b = L/E and Qy=M,=0 gives

1 dr 1\* «a

For these calculations the factor ¢ from (3.11) dominates over the extra 1/r% term in
“a” from (3.10), so for present purposes we will assume that

2M 2
azl——+Q—2:1—2Mw+Q2w2, w=1/r. (5.90)
T r

From (5.89) with dr/d¢ = 0, the distance of closest approach Ry is related to the

impact parameter b by

11 oM
S (1222 5.91
b? Rﬁ( Ry +R(2)> (5.9

To find the angular deflection of light we will use the method of [69]. Integrating

(5.89) or using (4.23) with b = L/E and Q2= M,=0 gives

o = / drjr” —dw w=1/r (5.92)
é\/1/b*—a/r? &/1/02—aw?’ . .

We assume that d¢ =~ M[0¢/OM]y1—g2—0+ Q*[00/0(Q*)] pr=g2=0, Where the differen-

tiation of (5.92) and the substitution M = Q? =0 is done before the integration to
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simplify the calculations. Following [69], the differentiation is done with a fixed Rq
from (5.91) instead of a fixed “b”. Using (5.91,5.92), and changing sign by convention

gives

56 — M[@ 1/Ro 2dw ]
M=Q=0

oM J, é\/m

a 1/Ro

a(Q?) Jo wl/b2 aw2]M 00

1/R0 ]./R
= M o
/ { 1/b2_aw2)3/2:|M:Q:O

1/Ro (—1/R} + w?) 2w
- 2/ d + 5.94
Q w[ (1/b2—aw2 3/2 A \/m Moo ( )

- [ [

+@Q? (5.93)

2 (—1/b" +w ) 2w
+Q /0 dw [(1/b2 w?) 32 T A \/m] (5.95)
1/b
- w/t - L/b — 2 _ 2
R 2M[\/l/bz—w2 V102 = w? ‘/1/67]0

, 1/b
o [w 5 Sasin(wd)
+Q [ V1/b? —w o )

3 asin(wb /b
+— [——Vl/bz—w2 e 1/6? —w? + %L . (5.96)

Therefore the angular deflection is

AM  37Q* | 3nQ?
b 462 8AE

¢ = (5.97)

This same result can also be obtained by another method[78]. Using w = 1/r and

w' = 0w/0¢ we can write (5.89) as

0 = - —— —aw. (5.98)

Using (3.10,3.11) for a, ¢ and keeping only terms which fall off as 1/r* or slower we
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get

é2

0 = i w? — &(1 - 2Mw + Q*w?)w? (5.99)
1 2 2,,,4 1
~ =i w? — w? + 2Mw* — Q*w* — Cibw <b_2 - w2) . (5.100)

Here the last term is the modification due to our theory. Taking the derivative of this

equation gives

2Q%w® [ 2
0 = 20 |—w"—w+ 3Mw* — 2Q*w® — %\w <——3w2)]. (5.101)
b

Removing the 2w’ gives

2Q%*w* (2
w4+ w = 3Mw? —2Q*w® — QAw (b—2—3w2). (5.102)
b

If the terms on the right-hand side were absent, this equation would have the solution
1/r = w = sin(¢$)/b, which is a straight line along the equatorial plane in spherical
coordinates. The terms on the right-hand side can be regarded as perturbations due

to the presence of the stationary body, so we seek a solution of the form

w = sin(¢p)/b+ f(¢). (5.103)

Substituting this and keeping only the first order terms gives

sin(9)
62

PR oS 2P (3 sl

—2 - =22 0 (5.104
@ A, BB\ 2 b2 )(50)

Using the identities sin?(¢) = (1 — cos(2¢))/2, sin®*(¢) = (3sin(¢) — sin(3¢))/4 and

sin®(¢) = (10sin(¢) — 5sin(3¢) + sin(5¢))/16 gives

'+ f = y(l — cos(29)) — @ <1 +

2 . :
2b2 o3 ) (3sin(¢) — sin(3¢)) (5.105)

Apb?
2

A

(10sin(¢) — bsin(3¢) + sin(5¢)). (5.106)
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Using (¢cos(¢))” = (cos¢p — ¢psing)’ = —2sin(¢p) — ¢cos(¢), it is easy to see that this

has the solution

3SM M Q 3 ™

J(8) = g+ ge0s(20) — 5 ( i ) (6—3)cos(@) (5.10)
Q2 7 . QQ .
o (5 — 8Abl72) sin(3¢) — WS sin(5¢). (5.108)
So the full perturbed solution is
_ sin(¢) 3M M 3Q* 1 T
= TEE S+ gos(20) — o (2— Abb2) (§ ~ ) cos(6) (5.109)
Q2 7 ' QQ '

o <1 — 4Abb2> sin(3¢) — AW sin(5¢). (5.110)

At r = 0o, w = 0 the unperturbed solution requires ¢ = 0. So if we set w = 0 for
the perturbed solution, the resulting ¢ will be half of the deflection, and we change

sign by convention ¢=—0d¢/2. Doing this and neglecting higher order terms gives,

0 sm(—bécb/z) N ?;Jg N Mcg;(éqb) B ?;%32 (Q_ﬁ)@ +52¢>608(5¢/215 1)
—%; (1 - 4A7b2) sin(—30¢,/2) — 65\;55@'71(—5%/2) (5.112)

~ (;erz];er%—z;g (2_/\3172) <g+%¢) (5.113)
1o (i) T a2 G4
SR

The resulting angular deflection is

d¢cr O0PrN O0Es

AM  37Q? . 37Q?
b 462 8AE

5 = (5.116)

Here the first term d¢ggr is the ordinary general relativistic deflection of light, and
this result agrees with [69]. The second term d¢pry is from the Reissner-Nordstrom
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Q?/r? term, and this result agrees with [81, 82, 83]. The last term d¢gg is from our
theory.

To find the time delay of light we will use a method much like the one used
for computing angular deflection, again from [69]. Using (4.25) with b = L/E and

Qo = M5 =0 gives the time dependence

(5.117)

;- / dr _ / rdr '

ac/1—ab?/r? acy/r2—ab?

We assume that 6t & M[0t/OM]y1—gz—0+ Q*[0t/I(Q*)] pr=g2=0, Where the differenti-
ation of (5.117) and the substitution M = Q? =0 is done before the integration to
simplify the calculations. Following [69], the differentiation is done with a fixed Rq
from (5.91) instead of a fixed “b”. The integration is done from an initial radius R; to
the distance of closest approach Ry, and then from Ry to the final radius R;. Using

(5.91,5.117) gives the time delay from Ry to Ry,

0 Ry rdr

oM Ro aé\/rz—abJM:Q:O
Ry
+Q? {L/ L} (5.118)
M=Q=0

o = o |

0(Q?) Jr, ac\/r2—ab?
_ Ry 0 2 N (=0 + arb*/R3)
B Ro aéV/r?—ab®  ad(r*—ab?)*? |, o
L /Rf i [_ 1/r N (b%/r — arb*/ RY) N 1/r3 (5.119)
Ro a?é\/1r2 —ab? 2a¢(r2 —ab?)3/2 alp@3Vr?—ab? | y—g—o
Ry 9 2
ir | + R L
r?—R2 (r2—Rg)%/
Ry 1 3
r [_ 3/r N /T

2\/r2—R%  Ay/r*—R?
R, |
r 0
= M |2in(r +/m—R2) + —
[ R e e,

~ 3acos(Ry/r) B
2Ry

= M

Ro

+@Q? (5.120)

Ro

+Q? {

Ry
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Ry

+Q2 \/TQ—R%+QCOS(R0/T) (5.121)
2N, | 2R3 R} '
Ry
=R "
_ 2_ P2 r—1Iip
= M |2in(r+/r?—R§) + =
0
- 3Q? {acos(Ro/r)}Rf
2 Ry Ro
R
+Q2 \/TQ—R%+acos(R0/r) ! (5.122)
2N, | r2RZ R} . '
0

The variable r is always positive, so to get the time delay from R; to Ry we use this

same expression but with Ry — R;. The resulting time delay in geometrized units is

0t = Otgr+ 0tgn + Otps (5123)

_ar o (Bt VBB (Re AV RI-RG) | [Ri—Ry - [R;—Ro
R? R+ Ry Rs+ Ry

| 3Q? {acos(RO/Ri) acas(Ro/Rf)]

+

2 Ro RO
2 2 P2 2 2 .
N Q \/Ri R \/Rf R N acos(Ro/R;)  acos(Ry/Ry) (5.124)
2, R?R2 R?Rg R3 R}

Here the first line, dtgg is the ordinary general relativistic time delay, and this result
agrees with [69]. The second line dtxy is from the Reissner-Nordstrom Q?/r? term.
The last line dtgg is from our theory.

For a first test case we choose b= R;/2= R;/2 = Ry = ao, the Bohr radius, and
M = Mp, QQ =Qp, for a proton because this case has some approximate physical
relevance, and because the Einstein-Schrodinger term will have the greatest effect for

small radii. Using M9o™) = M (99 G /c?, QU9eom) = Q(¢99) /G /c* and esu=cm>/?g'/?/s
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we have

6.67x 10" %cm?/g- s>

M = Mp:1.67><10_24g( ):1.24><10_520m, (5.125)

(3x10%cm/s)?
_ 6.67x10"8cm3/g-s? B
Q = |Q.=48x10 1oesu\/ B 100mjs) — 1.38x 10 **em,  (5.126)
b = Ri/2=R;/2=Ry=ay=.529x10"%cm, (5.127)
Ay = 10%em™2 (5.128)

For the angular deflections we get

4x1.24 x 1077
Sher = X529 ><><10_Scmcm — .36 x 10~ *rad, (5.129)

3m(1.38 x 10~34cm)?
4(.529 x 10=8cm)?
3m(1.38 x 10734cm)?

— _ —101
0085 = 5520 x 10 Fem) x T0%am? ~ 285 X 107 rad. (5.131)

Sory = = —1.60 x 10~°'rad, (5.130)

For the times delays we get

1.24 x 10~%%¢cm 2
Star = 4in(2 —| =2 1092 132
CR S 100 /s [ n( +\/§)+\/§} 65 x 10725, (5.132)
3(1.38 x 10734cm)? 27/3
Stry = — = -3.75x 1077 5.133
RN 2% 3 x 100cm/s | 529 x 10-Scm s (5.133)
(1.38 x 10~%4cm)? V3/2+21/3 120
Stpg = = 6.31x1071%%5.(5.134
ES = 3%100em/s x2 x 10¢m—2 | (529 x 10-8cm)? 8 s(5.134)

For reference purposes, these results may be compared to the travel time of light
across a Bohr radius, ap/c=1.76 x 107 "s.

For a second test case we choose M = M, because this is the smallest black
hole we can expect to observe, and the smallest black hole will create the worst-
case observable spatial curvature. We choose an extremal black hole with Q) = M
because this is the worst-case charge which avoids a naked singularity, and we choose
b= R, = Ry = 2Ry = 4M because this is close to the gravitational radius. Using
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Mgeom) = M (©95) G /¢? we have

6.67x10"8cm3/g-s?
(3x109¢m/s)?

M = Q= M,=199x 10339( ) = 1.47 x 10°cm, (5.135)

b = R;=R;=2Ry=4M = 5.90x10°cm, (5.136)

Ay = 10%em™2 (5.137)

For the angular deflections we get

4 % 1.47 x 10°em
Sbar = — 1.0rad 5.138
d6r 5.90 x 105cm s (5.138)

3m(1.47 x 10°cm)?
4(5.90 x 105cm)?
3m(1.47 x 10°cm)?

) = =2.11 x 107 ®rad. 5.140
985 = 5(5.90 x 105cm) x 10%6cm -2 x e (5.140)

OprN =

= —.147rad, (5.139)

For the time delays we get

1.47 x 10° 2
Stap = ——————— |4n(2+V3)+ —=| =3.16 x 107° 5.141
“h 3 x 10%¢m/s [ n(2+V3) + \/§] . > ( )
3(1.47 x 10°cm)? 4/3 _
Stpy = — =773 x107° 142
N 2 x 3 x 10%m/s [5.90 x 10°cm 3x 1077, (5.142)
(1.47 x 10°cm)? 44/3 4 167/3

otps = [

_ —83
3 x 100%¢m/s x 2 x 10%6¢m—2 ] = 4.18x107s.(5.143)

(5.90 x 10%¢cm)?

For reference purposes, these results may be compared to the travel time of light
across the initial radius, R;/c=1.97x1075s.

The contributions d¢gs and dtgg from the A-renormalized Einstein-Schrodinger
theory are too tiny to measure, with a fractional difference from the Einstein-Maxwell
result of <1077, Again this shows how closely the theory matches Einstein-Maxwell

theory.
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5.3 Shift in Hydrogen atom energy levels

Here we estimate the energy shift of a Hydrogen atom that would result in our theory
as compared to Einstein-Maxwell theory. This is an important case to consider be-
cause these energy levels can be measured so accurately. It is also significant because
it demonstrates that predictions can be done when additional fields are included in
the theory. When a spin-1/2 field is added onto our Lagrangian, the theory predicts
the ordinary Dirac equation in curved space. We will only consider the effect of the
difference between our electric monopole potential (3.9) and the Reissner-Nordstrom
Q/r potential. We will neglect the difference of the metrics, and in fact we will neglect
the difference of the metric from that of flat space. Because of this, we do not expect
the calculated energy shift to be accurate in an absolute sense. We are only attempt-
ing to get an order of magnitude estimate of the energy shift of our charge solution vs.
the Reissner-Nordstrom solution. Using (3.9) the potential energy difference between

the two solutions is

AV — Q.4 = & (

A (5.144)

M. 4Q:
rt 55 )
Using this result, an estimate of the shift in the energy levels can be calculated using

perturbation theory. It is sufficient to treat the problem non-relativistically. The

lowest energy level of a Hydrogen atom is spherically symmetric with

Yo = 1/ 1/mad e/, (5.145)

Unlike the Reissner-Nordstrom solution, the vector potential of our charged solution
is finite at the origin. However, the origin is at ro = \/Q(2/A;)*/* from (3.16) instead
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of at r = 0. Taking this into account gives

Arr?dr (5.146
Tay r4 5Abr5) mridr ( )

(e

— (%) —2’“/%( )47rr (5.147)
>
K

2
AEO ~< ¢0|AV|¢0 > = Qg (L) —27’/0,0 Me 4Q

4Q2 [* (M, 4Q? 4@2

~ ¢ d 5.148
CL%A[, /ro ( 2 5r3 e ( )
4Q? e 202

— e 5.149
ajy ( o ré ( )

Using (3.16) and Q. = /alp from (2.36), the M, term is insignificant and we get

AE, ~ — (5.150)

1Q2 02V AQPVIQ. (

_ Qg) 484/ 2« lp
aghy 5 v2Q. ay VA

2@0 5&%\/ Ab ’
The term in the parenthesis is the ground state energy of a Hydrogen atom. With
Ey = ¢e%*/2ap ~ 13.6eV, Ip = 1.6 x 1073cm, Ay ~ 105cm ™2, h ~ 4 x 107V - 5, and

= h?/mee? ~ 5 x 10~%cm we get

48\ 2alp
5&%\/ Ab

AE,

2
~107%, AEON%M%O ~ 10*496‘/’ Afyr~ ~ 107 H 2. (5.151)
0

This is clearly unmeasurable.
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Chapter 6

Application of Newman-Penrose

methods

6.1 Newman-Penrose methods applied to the ex-

act field equations

Here we use Newman-Penrose tetrad formalism to derive several results. In par-
ticular, we derive an exact solution for Ny, in terms of g,, and f,,, and an exact
solution of the connection equations (2.59), and we confirm the approximate solu-
tions (2.34,2.35) and (2.62,2.63). We also derive the spin coefficients and Weyl tensor
components for our charged solution (3.1-3.7), and show that it has Petrov type-D
classification. Throughout this section, Latin letters indicate tetrad indices and Greek

letters indicate tensor indices, and we assume n=4 and the definitions
frr=pev2ingtto r=v2ing 't Q=Qv2in, ', (6.1)
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Using the definitions (2.4,2.22) we have

V—N .
Wor = TN = g (6.2)

Let us consider the following theorem which is similar to one in [51]:
Theorem:Assume W is a real tensor, f sr=WIH and ¢g7* =W is an invertible

metric which can be put into Newman-Penrose tetrad form

01 0 0

, ) 1 0 0 0
gab pr—y ga g gaﬁeaae ﬁ g 5 (63)

0 0 0 -1

0 0-10
I = e, n"=e’,m°=e3” ,m7=e,°, (6.4)
lo = 6207 Ng = 6107 Mg = _6407 m:: _6307 (65)
o = e e, , 0y = 7€, (6.6)
e = det(e?,)) = eaﬁ”“langmgm; (6.7)
e — _e. (6.8)

where [, and n, are real, m, and m}, are complex conjugates. Then tetrads e®, may
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be chosen such that

Wab

~

Waﬂeaa €b5 —

0O w 0 O

- 0 0 0
0 0 0 —wu

0 0 idu O

0 (1+i)
(1—@) 0
0 0
0 0
uw 0
. 0 —u
, [h=
0 0
0 0

w0

0 —wu

0
0
—(1+iu) |
0
00— 0 0
. z 0 0 O
, Jar=
0 0 0
0 0 —w O

(6.9)

, (6.10)

where @ and @ are real, except for null fields with f"uf“a = det(fﬂy) = 0, in which

case tetrads may be chosen such that

Wab

~

fab

Webe, ebg =
00 0 O
0 0—u —1u
0O« 0 O
0O« 0 O

01 0 0

1 0—d—d

04 0 -1

0 4d—-1 0

00

) 00
, fh=

i 0

i 0

fab:

(6.11)

. (6.12)

where 4 is real. If W?* is instead Hermitian, things are unchanged except that the

scalars

(u grave) and “@” (u check) are imaginary instead of real. The above

theorem is proven in Appendix T.
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One difference from the usual Newman-Penrose formalism is that gauge freedom
is restricted so that only type III tetrad transformations can be used. Covariant

derivative is done in the usual fashion,
Tab|c — eaoebuTg;m—ecT — Tab,c + ’Yadchb . ’decTad‘ (613)
For the spin coefficients we will follow the conventions of Chandrasekhar[64],

1
Yabe = E(Aabc + >\cab - )\bca) = eauebu;aecaa (614)
Yabe = —Vbac ’yaac - 07 (615)

>\abc - (eba,p, - eb,u,a)eagec# - ebcr,,u(eaaec'u - eauecg) = Yabc — VYeba, (616)

Aabe = —Acha; (6.17)
P="7314 , UH="7243 , T ="7312 , T = Y241, (6.18)
K=7311 , 0=7313 , A="Ya4 , V= "Yo42, (6.19)
€ = (Y1 +7341)/2 . v = (Y212 + V342)/2, (6.20)
a= (Vo1 +7344)/2 , B = (V213 + V343)/2- (6.21)

With these coefficients and with other tetrad quantities, complex conjugation causes
the exchange 3—4,4— 3. As usual we may also define directional derivative opera-

tors,

A= Ggai 0= egai (S* = €4ai. (622)

0
D = -2
“ oxe oxe ' oxe ox®

Substituting (2.65,2.66) into (2.28) gives the Einstein equations and antisymmetric
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field equations in tetrad form

1
Rbd = 8nG (de - §gde;> - AbN(bd) - Aegbd
TGy + Lawia) T Toa Tea) T Yoo Lieg — Lioa) Teas (6.23)

- A1/2 a c a c a c a
ApN [bd] = 2A[d\b}\/§ZAb/ - T[bd]|a + T(ba)T[cd] + T[ba] T(cd) - T[bd]Tca' (6.24)

The usual Ricci identities will be valid if we define ®,, values in terms of the right-

hand side of (6.23),

Qoo = —R11/2, o = —Raa/2, Pop = —Ry3/2, oo = —Rus/2, (6.25)
Qop = —Ri3/2, Pro = —Riy/2, P1p = —Ro3/2, oy = —Ray/2, (6.26)

Oy = —(Ris + Ras)/4, A= R/24 = (Ri» — Rsy)/12. (6.27)

First let us consider the case where we do not have f"uf“(, = det(f“,,) =0. Itis

easily verified from (6.10) that the scalars are given by[51]

W o= V@ — /4, (6.28)
i = \/[Vo+ l/4, (6.29)
where
w = (/4 - f/g, (6.30)
fo= det(fu) . g=det(gu), (6.31)
flg = —u?, (6.32)
¢ = foufts =20 —u?). (6.33)
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From (6.2), the fundamental tensor of the Einstein-Schrédinger theory is,

N—|ab

Nbc

where

0 (1—a) 0 0
_ " (1+a) O 0 0
—N, !
0 0 0 —(1—du)
0 0 —(1+it) 0
0 (1-wéfe 0 0
(1+a)c/c 0 0 0
0 0 0 —(1—iu)e/e
0 0 —(1+iw)e/e 0
— ! =v1-352
Ve ’
u o= $§/c,
1
¢ = =V1+32,
1—2u2
au = /e,
)
—-N, = —det(Ny) = —,
ée
—go = /—det(gap) = 1.

(6.34)

(6.35)

(6.36)
(6.37)
(6.38)
(6.39)
(6.40)

(6.41)

Note the correspondence of s, ¢, @ and §, ¢, @ to circular and hyperbolic trigonometry

functions.
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From (6.10,6.13), Ampere’s law (2.47) becomes,

4T ~c rbe rac c frba
?] = fb ,b + /}/be +r>/abfb )
ATy a9 3 712 4 712 2 743 2 134
?J = [at ST vl TS S
= Du— p*u— pu — piu + p*iu
= Diu— pw— p*w*,
ATy oy 3 p21 4 p21 1 743 1 734
?J = [Tt v ST tYeufT S S
= —AU— pt — 4+ prin — pin
= —Aut— pw — prw*,
AT~y 734 1 734 2 134 4 p21 4 712
?J = [T+ fT T el e f

= —idu — 7hiu + Tiu + TU + 7T

= —idu+ Tw + Trw*,

where

w = U-+iu

(6.42)
(6.43)
(6.44)
(6.45)
(6.46)
(6.47)
(6.48)
(6.49)
(6.50)

(6.51)

(6.52)

The connection equations are easier to work with in contravariant form (2.59) than

in covariant form (2.55). Multiplying (2.59) by /=N /,/—g and using (6.34,6.13,2.61)
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and (6.40,6.41) gives

0= Ogd — % (N%cdb + 7;1})]\]’40(1 + ,y;bN%ad + T;ib]\ﬁca + Tbca]\ﬁad)

+i—: (j[d(sg] — %3“N[ab]N*cd> , (6.53)
0= O = Yy(1—u)+Th(1+a), (6.54)
0= 02 = 7Yi(1+a)+ YA(1—a), (6.55)
0= 0P = —T}(1—iu)— Y (1+iun), (6.56)

0="0," = Fiy+ (1F1) (——(”_T]j;)’bﬁﬁwinﬁ)

8 . 1.
4o 471261 — ZJNyyee(1F ) (6.57)
3c 2
= (1Fa) (Fipd® — dinpe® + 05 + 1))

8t ([ +1 - . (1Fa) -
OT | =2 5t 4 a2 Gl4assl
+ . ((1 a)j b —i—zu(l az)j 5, (6.58)

0=%0P = ity + (1Fi) (—<V e ey frg)

87T ~ 1 ~ .o N
+ (19[45;’"] + §JGN[ab]CC(1¢ZU)) (6.59)
= (1) (it e® — wiye® — Y5 — 1)

8T +1 . (1Fiu) -
3¢ ((u:m)] o Ty %)

N § oy, BT
0 =0 = yu(—(14a) + (1Fin)) + =0 (1+£a) — 05 (1Fin) + 3—7;][452] (6.61)

(6.60)

N 8T
= Fyspw + 1 (1£0) — 205 (1Fin) + gj[‘léz], (6.62)
. N . . 8 A
0 =0 = you((1Fa) — (1£in)) + 05 (1Fa) — 0, (1+in) + 53[3521 (6.63)

N 87 ~
= Fraww + 5 (1F0) — Ty, (1+i) + S—FJ[?)(S;], (6.64)
c
To save space in the equations above we are using the notation,

,Ozlc — +Ogd _ Ogd ’ *Tgb = +Tl()ic = Tgc (665)
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The connection equations (6.54-6.64) can be solved by forming linear combinations

of them where all of the T, terms cancel except for the desired one. The calculations

are done in Appendix U. Splitting the result into symmetric and antisymmetric

components gives

Tz
Tiiz)
T(sa)

T

T
Tz
Tiis)

Tiis)

Tiza)
Tiis)
Tis)

Tiis)

A7 -
FaDy — - 52
3¢
AT
Fala + gt
3¢
AmePi -
—&Pun + 3 it
C
Arac?
4D — DU + =32,
3¢
4drue? .
UAU? — aAGFE — 2E 51
ATituc? -
woU? — wou® — 2 74
Y22y = Yiawy = 0,
) 2mIUC? A
—(6uc® — iduc?) — it
2 3¢
it 2t
— (6uc® + iouc?) — i
5 ) .
u 2TUE? -
——(Duc* + iDuc*) + 2,
5 )+
u 2TUE -
——(Auc® — iAu?) — L
5 ) =5
uc? 5V(;2 N . .
— | 0Us + 7w —TTW" ],
2 2
NN )
we” (. ¢ . %
—— (zDué—2+pw—p w ),
NN \ 9
e AL C * %
5 <2Au§ — pw + prw ),
RWU rwu
— , Ty =-— :
z 24) z
owi AW
) TS = <
3 24 3
2 2
Kw 3 vw
I h

(6.66)
(6.67)
(6.68)
(6.69)
(6.70)
(6.71)
(6.72)
(6.73)
(6.74)
(6.75)
(6.76)
(6.77)
(6.78)
(6.79)
(6.80)
(6.81)

(6.82)



where

Tz

Tiay

Yoy

ity
Ty
Ty

Ty

Ty

Ty

= 5 o Tuy=-—"F- (6.83)
A
= —#Da+ ;Ts 72, (6.84)
A2 .
= _PAu-— gcc I (6.85)
A2,
T ;TCC i, (6.86)
1 22 .
= S(duc® — idw?) — LS4, (6.87)
3c
1 22 .
= (608 + i) - gs 7, (6.88)
1 22
= (D +iDue?) - 73TCC 32 (6.89)
1 22 .
= S(Aad —idie?) - ;TCC I (6.90)
~2 ~2
= % (5126—2 + 1w — W*w*), (6.91)
C
&2 &2
- 3 (zDuE + pw — p*w*), (6.92)
62 62
- — (zAu; — pw + pf"w*), (6.93)
RW rw
ow N Aw
= 5 Tpg= (6.95)

(1) (1+a) + (1Fin)*(1Fa)]/2 = 1 + 2iun — u*,  (6.96)

[(1£0)*(1+in) + (1Fu)*(1Fi)]/2 = 1 + 2un + o°. (6.97)

As an error check, it is easy to verify that these results agree with (2.57) and (2.8),

Tiha)

Tisa)

8

= it =i (aé%s}}j?] - mé?(s}f’j‘”) (6.98)

= 0.

(vV=9)p (V=No)p 4Am \/—gs -
LI b 2T N, 6.99
V=0 VN, 3¢ /—N, (6.99)

(6.100)
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The tetrad formalism allows the approximation | f v,.| < 1 to be stated somewhat
more rigorously as || < 1, |@| < 1. From (6.28-6.33), a charged particle will have
@~ Q/r?,u = 0. From (2.37) we have |a|> ~ 1079 for worst-case fields accessible
to measurement, so the approximation | f ,| < 11is quite valid for almost all cases of
interest.

Let us consider the tetrad version of the approximate solution of the connection
equations (2.62-2.63), which is calculated in Appendix V. This solution differs from

the exact solution (6.66-6.95) only by the factors ¢,¢,2,2. From (6.96,6.97) and
e l+a?/2, c~1—u2/2, (6.101)

these factors will induce terms which are two orders higher in & and @ than the leading
order terms. This confirms that the next higher order terms in (2.62-2.63) will be
two orders higher in f#, than the leading order terms, and from (2.37) these terms
must be <1079 of the leading order terms.

Now consider the tetrad version of the approximation (2.34,2.35) for N, in terms

of g,,, and f,,. From (6.36,6.38,6.33,6.35,6.3,6.10) we have, to second order in % and 1,

¢le =~  1+a*2+u/2= 1+0*— (/4 (6.102)
—¢fe = —1+02407/2= -1+ + (/4, (6.103)
0 ¢/e 0 0
e 000

NS |
Ny = R Gab+ Ja Job = a0 b, (6.104)
0 0 0 —¢e

0 0 —¢/é 0

81



—ac/e 0 0

0 0 0
fab-

0 0 iue/é

0 —iue/e 0

(6.105)

These results match the order f2 approximations (2.34,2.35). The next higher order

terms of (6.102,6.103) will be two orders higher in & and @ than the leading order

terms. This confirms that the next higher order terms in (2.34,2.35) will be two

orders higher in f#, than the leading order terms, and from (2.37) these terms must

be <107% of the leading order terms.

Now let us consider the tetrad version of the charged solution (3.1-3.7). The

tetrads are similar to those of the Reissner-Nordstrom solution[64], except for the ¢

factors,
ela =lo = (1,—1/ac,0,0) , e =1"=(1/ac,1,0,0),
1. . 1 y
€20 =Ny = §(ac, 1,0,0) , e =n%= 5(1, —ac,0,0),
Cs0 = Ma = —1\/E/2(0,0,1,isin6), es® =m® = %(0,0, 1,icsch),
rv2¢
where “a” is defined with (3.4) and from (6.1,6.36-6.39,3.5) we have

¢

¢

¢

0, s=0, ¢c=1,
5Q
¢ er?
9
r2’
1 Q?
T 1482 =/1+
T + s +T4
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(6.107)

(6.108)

(6.109)
(6.110)

(6.111)

(6.112)



From (6.2,6.106-6.108,6.1,6.40,6.41,6.7), the tetrad solution matches the solution

(3.1,3.2) derived previously,

Wt = e, Wehe,t (6.113)
0 1+a 0 Of[L 1 0 0

1-a 0 0 0
= ¢, (6.114)

(1441) (1+4) aé
w3 0 0 S T 0 0
1 -2 9 O | = 0 0
= “ (6.115)
1 1 1 i cscl
0 O rv2¢ V28 O O _'r’ 2¢ 'r\/%
icscl icscl 1 icscl
0 0 rvV2¢ _r\/% 0 O _r 2¢ _r\/%
1/a =3 0 0
1 S —ac? 0 0
- - , (6.116)
¢
0 0 —1/7"2 0
0 0 0 —1/r%in®*0
= det(e,”) = icsch/er?, (6.117)
= det(e,) = —iérsinf, (6.118)

V=N, e =ie/éc = r’sinf, (6.119)

30, =
1

= V—goe =ie=¢risind. (6.120)

Let us calculate the spin coefficients and Wely tensor components for our charged

83



solution, so that it may classified. The nonzero tetrad derivatives are,

€11,1

€32,1

1Y\ 5/
= - (T) y €201 = (azc) , esza = —Ty/C/2icos,
ac

NG réd =48 -1 g
= —Ve¢e— = = , €331 =e€327118IN0.
226 Vaee  vaee | T

From these and (6.16), the Ay coefficients are

)\alb

>\221

>\123

)\223

)\324

)\132

)\233

>\243

>\441

)\431

)\334

1 1 1 1
er11(eq e —eq e )=0,

ac)’
62071(620611_ ealer?) = ( 2) ,

0,1 1.0
620,1(61 €3 — €1 €3 ): 0,

0,1 1.0
620,1(62 €3 — €z €3 )Z 0,

0,1 1.0
620,1(63 €4 — €3 €4 ) 0,
0,1 1. 0y__
e30,1(61 €2 — €1 €2 )— 0,
12 1.3
—€32,1€2 €3 — €33,1€2 €3 = 0,

12 1.3 -1 —ac 1 a
—€421€2 €3 — €431€3 €3° = —2 NoTE 5 mVoT: — —5

2 1 3 1
esp1€4°€1 + eygz1e4”er = 0,

-1 1 1
2 1 3 1
€32,1€4 €1 + €331€47€1 = 2 (—

Vace) m/2e e

esza(es’es® — e3’es”) = 2(—ry\/¢/2icos 0) (

2E ) /e /2
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icsc@) 1 cot @

(6.121)

(6.122)

(6.123)
(6.124)
(6.125)
(6.126)
(6.127)
(6.128)
(6.129)
(6.130)
(6.131)

(6.132)

. (6.133)



solution[64], except for the ¢ factors,

1
Y314 = A1 = Y

ré

a
Y243 = Aoz = )

2ré
1 1 cot 0
— p— —A pu—
2(72134-7343) 5334 97 /2

1 —cot 0
5(7214‘1"7344) = 5)\344: 2 /3e
1 1 (ac)
— p— —A pr—
2(’7212‘1‘7342) 57221 1
1
5(72114‘7341):0,
Y312 = 0,
Y241 = 0,
Y311 = 0,
Y313 = 0,
Yoaa = 0,
Y42 = 0.

The Weyl tensor components calculated with MAPLE are

rd r3

1 20\ (m AQ*V A, A
Y2 = "<1+_><__ w76 6 )T o

\Ijo - \111:\113:\11420.

AQ?

Q2

2676’

From (6.14), the spin coefficients are similar to those of the Reissner-Nordstrom

(6.134)
(6.135)
(6.136)
(6.137)
(6.138)
(6.139)
(6.140)
(6.141)
(6.142)
(6.143)
(6.144)

(6.145)

(6.146)

(6.147)

The results k =0 =A=v=€=0 and ¥y = ¥; = V3 = ¥, = 0 prove that the

charged solution (3.1,3.7) has the classification of Petrov type-D, the same as the

Reissner-Nordstrom solution.
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Next let us find the exact solution for N,, in terms of g,, and f,,. Using

(6.10,6.35) we have

0u> 0 0 0 —u 0 0
o w0 0 0 N w 0 0 0
facfcb = ) facfcdf b— ) (6148)
0 00 u 0 0 0 —idd
0 0% 0 0 0w 0
0 (1—u)/c? 0 0
(1+a)/* 0 0 0
Nab = Cc ’ (6149)
0 0 0 —(1—in)/é?
0 0 (144u)/ 0
0 (1—u)(1 + u?) 0 0
(1+a)(1+u*) 0 0 0
= & . (6.150)
0 0 0 —(1—d)(1 — u?)
0 0 (I+u)(1 —a®) 0

Using (6.36,6.38,6.31,6.33) gives

& = ! L L (6.151)

N N e T D e N

The exact solution for N, is then

Nowy = (1= /2) g+ fupf) (6.152)
Nywj = @((1=0/2) fuw + Fuof?a ), (6.153)
Ny = &((1—=£/2)8% + fupf®) (Gaw + fou) - (6.154)
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These can be written so that they are approximately correct for any dimension,

N, = Q=D+ Tl 6155
V1-t/(n=2)+ f/g

Ny = L2 & Julels, (6.156)

V1-t/n=2)+ f/g
(1= 6/(n=2)52 + fpf*

Nw/ = — (goa/ + fow> ) (6'157)
V1-t/m=2)+ /g
Ne = O 26/(n=2) _, (6.158)
Vi-t/n=2)+ /g

1 a Gur(1=1/2) + fup "
Niw) = 59 Na = =5 e
VI-t/(n=2)+ /g

2
Now let us consider the null field case where f”uf“g: det(f“,,) = 0. Using (6.11)

(6.159)

we have
01 0 0 202 1 4
1 0 a4 4 1 0 0 O
N = . Npw = ., (6.160)
0 - 0 —1 —% 0 0 -1
0 —¢ —1 0 —% 0 —1 0
—N, = +/—det(Ny) =1, (6.161)

—go = /—det(ga) = i. (6.162)

In terms of ordinary Newman-Penrose formalism, we are representing null fields with
the three complex Maxwell scalars set to ¢g= flg =u, ¢ =0, ¢po=0. With a type
I1I tetrad transformation we have ¢y — ¢oe®/A, ¢1 — ¢1, ¢y — o™ A, for arbitrary
real functions # and A. Therefore by performing a type III transformation we may
always choose 1 to be a real constant representing the magnitude of the field. This
is sometimes helpful because it reduces the number of terms in f‘gw and when 7V =0
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it makes Ampere’s law just a relationship between spin coefficients.

From (6.12,6.13), Ampere’s law (2.47) for null fields is

The = ol (6.163)
4%52 = [Pat ST Hvhf Ak v B
+ s+ S ST A ST A S 5T+ %l (6.164)
= Gg+ U3+ (Y211 — V304 + Y124 + Y231 — Yazs + Y123) 0, (6.165)
— 0+ 64 + 2Re(m — 204, (6.166)
4%51 = 3l + v+ e RS (6.167)
= (=242 — Y232)0 (6.168)
= —2Re(v), (6.169)
4%54 = ot Voo + o + uf S
+ Y3 f5 + Y (6.170)
= —Uo+ (=122 + Yazs + V342 — Y323)U (6.171)
= —Ad+ (2y — p+ \")d, (6.172)

The connection equations (2.55) can be solved exactly for null fields. Using
(D.9,D.7,D.11) and letting Unor =T from (D.12), the order f* solution for faw is

given by,

Foa/u = Pcwp,+T[o¢u]‘rf7u+T[O¢V}TfTu+T(Vu)TfToc -

1
5 Toadu + TG w9na+ Tav, (6.173)

where

2 .
T = =T, f, 6.174
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Toa/u = Uauu + UocanJ/LfTV + U(;w)v'faafTV - U(VO’)TfU(XfT/L + U[V;,L]UfUTfTOC

1 o A
—Um—a i v —Ua T Lo fr Vi 6175
]- ~ n 2 87T ~
U = §(fvu;a + fopw = for) + m][vgu}w (6.176)

It happens that for the special case of null fields (6.173-6.176) is exact instead of
approximate. This can be proven by substituting (6.175,6.176) into (D.11) and using

(6.3,6.10) with constant 7. The only properties of Uy, needed to prove this are

Uimn=—Ugnm and Usog3 =Uso4 =0, and these are easy to see from its definition,
1 - N A T
Uanm = ZUnmia am;n — Jan;m o N -n mla- 6177
5 (fumia + fam; f,)+<n_1)[9] (6.177)
1 A A N
= 5 ( fnm,a - /ybnafbm - ’meafnb

+ fam,n - rybanfbm - 'menfab

n 2 N 87T ~
_fan,m + V/bamfbn + Vbnmfab> + mj[ngm]a- (6'178)

It is unclear whether we can ever have ;7 #0 for null fields, but the solution of the
connection equations works even for this case.
Finally, from (6.160,6.3,6.12) we see that the solution (2.34,2.35) for N, in terms

of g,, and f,, is exact instead of approximate for null fields,

202 0 0 0 0 00O
A a 0 0 00 o 202 0 0 0
Jacfb = . Sl S = : (6.179)
0 000 0 00O
0 00O 0 00O
r o fc 1 fa fc R
N(ba) = Gba + fbcf a Zgabf cf as N[ba} = fba. (6180)
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6.2 Newman-Penrose asymptotically flat O(1/r°) ex-

pansion of the field equations

Here we solve the LRES field equations to O(1/r?) in a Newman-Penrose tetrad
frame, assuming an asymptotically flat 1/r expansion of the unknowns, and assuming
a retarded time coordinate which remains constant on a surface moving along with
any radial propagation of radiation. We consider two main cases. For propagation
at the speed-of-light with £k = w we show that LRES theory and Einstein-Maxwell
theory are the same. We demonstrate radiation in the form of electromagnetic and
gravitational waves, and peeling behavior of the Weyl scalars, and we show that the
Proca equation (2.81) has the trivial solution #, =0 corresponding to Faraday’s law.
For propagation different than the speed-of-light with k& <w and 2A, = w? — k2, the
Proca equation could potentially have Proca-wave solutions, and this analysis could
determine whether such solutions have positive or negative energy. In fact what we
find is that no Proca-wave solutions exist. This work emulates the analysis of Einstein-
Maxwell theory in [54, 55] and to a lesser extent in [84]. It is all implemented in a
REDUCE symbolic algebra program[63] called LRES_10R_RETARDED.TXT.

In the following, Latin letters a,b...h indicate tetrad indices, and Greek letters

indicate tensor indices. Let us ignore the @, ¢ coordinates for the moment. Following
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[54] we assume that in ¢, 7 coordinates the flat-space tetrads are

1/2 —1/2 1 -1

Oeay - ) 06bl/ = 9 (6181)
11 1/2 1/2
1/2 12 [1 0 1/2 1/2

0Cay = — . (6.182)
1 1 0 —1 1 -1

We can check that these satisfy the requirements for Newman-Penrose tetrads

1 -1 1/2 1 10
06b1/ Oeya = = y (6183)
1/2 1/2 —-1/2 1 0 1
b 1172\ [1/2 1/2 1 0
09ur = 0€u 0Cky = - , (6.184)
-1 1/2 1 -1 0 -1
12 1/2) [ 12 1 01
09ab = 0€av0€ b = = . (6.185)
1 -1 \-1/2 1 10

The calculations are done using a retarded time coordinate

u=t-—kr/w (6.186)

where k = (wavenumber), w = (frequency), r = (radius). The transformation from

t,r coordinates to u,r coordinates has the transformation matrix

ou Ou
Gu  Du 1 —k/w
T = | | = , (6.187)
or or
ot ot
o= | = . (6.188)
o o 0 1
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Transforming the flat-space tetrads and metric to u, r coordinates gives

1 -1 1 kjw 1 kjw—1
oet, = = : (6.189)
1/2 1/2) \o 1 1/2 k/2w+1/2
1/2 —1/2 1 0 k/2w+1/2 —1/2
Oea” = = y (6190)
11 —kfw 1 1 —kjw 1
1 o)1 O 1 kjw 1 0} (1 k/w
0o = - (6.191)
kjw 1 0 —1 0 kjw 1 0 -1
1 k/w
= , (6.192)
klw Kk*/w?—1
1—k*/w? kjw
g = (6.193)
k/w -1

We assume that in cartesian coordinates the 1st approximation beyond flat-space

has a 1/r falloff, the 2nd approximation has a 1/r? falloff, etcetera. Considering

that g, = diag(1,—1, —r?, —r?sin?0) and og"* = diag(1,—1,—1/r?* —1/r?sin?d) in

spherical coordinates, we can conclude that in spherical coordinates a 1/r falloff

should look like (1/7,1/7,1,1) for a covariant vector and (1/r,1/r,1/r% 1/r?) for a

contravariant vector. Following [54] for the 6, ¢ part of the flat-space tetrads, and

using the results above, the covariant tetrads are assumed to be of the form

b

b b b
ey =9, ti1e, t2e,
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where

1 kjw—1 0 0
, 1/2 k/2w+1/2 0 0
0€v =
0 0 —T/\/§ —irsin@/\/i
0 0 —r/\V2 irsind /2
ap/r ay/r as as
bo/?" bl/’l" bg b3
1ebu = € )
co/r ci/r ¢ c3
do/T dl/’l" d2 d3
Ao/?“2 Al/r2 AQ/T’ Ag/’l"
Bo/?”2 Bl/'f’2 BQ/T B3/7”
2ebu = 62

00/7"2 01/7“2 OQ/T Cg/’f’

D0/7"2 Dl/T‘2 DQ/T D3/7“

and the contravariant tetrads are assumed to be of the form

v v v v
€q = 0€q T 164 + 264
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(6.196)

(6.197)

(6.198)



where

k/2w+1/2 —1/2 0 0
1 —kjw 1 0 0

e = . (6.199)

0 0 —1/(rv2) i/(\/2rsind)

0 0 —1/(rv2) —i/(v/2r sind)

a/r a/r a*/r* a?/r?

w/r ot/r vE/r? b3/r?
18" = € : (6.200)
Afrocro At B r?

d°/r dY)r d*/r* d3/r*
AO/T2 AI/T2 AZ/T?’ A3/7”3
BO/T2 BI/TQ BQ/T?’ B3/T3

ses” = € . (6.201)
CO/T’2 01/7“2 02/7,3 03/7“3

D°/r* D'/r* D?*/r® D3/r?

These tetrads are a generalization of those used in [54], reducing to the same form
for speed-of-light propagation with & =w. The functions d', d;, D%, D; are complex
conjugates of the functions ¢, ¢;, C%, C;. The € parameter is included in the program
to keep track of the order of terms, but we set ¢ = 1 in any final result. Using a
symbolic algebra linear equation solver, the program calculates the 16 coefficients
a’,b', ¢t d’ in terms of the coefficients a;, b;, ¢;,d; by solving to O(e) the set of 16

equations
(0€a” + 1€4")(0€" + 1€") = dr. (6.202)

Then it calculates the 16 coefficients A*, B*, C*, D' in terms of the coefficients a;, b;, ¢;, d;,
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Ay, By, Cy, D; by solving to O(e?) the set of 16 equations
e e’ = o (6.203)

Since the contravariant antisymmetric field f*” satisfies Ampere’s law (2.47) ex-

actly in both LRES theory and Einstein-Maxwell theory, we require the dual field
= €uapf® /2 (6.204)
to be the curl of a dual potential
Jow=A0, — A (6.205)

This ensures that Ampere’s law is satisfied automatically. Using the same consider-
ations as with the tetrads regarding a 1/r falloff in spherical coordinates, the dual

potential is assumed to be of the form

A =AY+, A (6.206)

where
1A1t =€ (hg/?", hl/T, hg, hg) ) (6207)
2A; — 62 (Ho/’f’z, H1/7”2, HQ/T, Hg/T) . (6208)

This dual potential is also used to make the system of equations well defined,
because A} contains only 4 unknowns, and our Proca equation contains only 4 equa-
tions. Note that [54] does not use either an ordinary potential or a dual potential,
but instead uses the 6 components of the electromagnetic field for unknowns. It is
unclear why he does this, since he obtains the same result but with more calculations.
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Our unknowns are then the dual potential components h;, H; and the tetrad com-
ponents a;, b;, ¢;, A;, B;, C;. Note that the unknowns d;, D; are complex conjugates

/]
.. C

of ¢;,C;, so ¢, c!,Cl,C!" determine d;, D;. All of the unknowns are assumed to de-
pend only on the three coordinates u, @, ¢, and not on r. The goal is to calculate the
field equations and then solve them for these unknowns. The first step in calculating
the field equations is to calculate the Ay coefficients, spin coefficients and Riemann

tensor, which are found from the equations

)\abc - ebmu(eaaecu - ecaea“), (6209)

1 u v
Yabe = 5()\abc + Acab — )\bca) = €pu;v€a’ €Ec (6210)
Rinpg = —Ymnpg + Ymngp — 7mnr)‘prq + meﬂrnq - ’YmquTnp (6-211)

The calculation of Ay to O(1/7?) would ordinarily be very time consuming because
of the O(r) components in e%,. To speed things up we calculate Ay to O(e?) and
then truncate the result to O(1/r?). We checked that this gives the same result as
doing the calculation the long way.

To calculate the nonsymmetric Ricci tensor }?mn we use the method described in
Appendix S. To do this calculation we use Y7, from the solution (2.61-2.64) to the

connection equations, and
[ = —ged g /2 (6.212)

from above. The fundamental tensor is calculated in tetrad form using the following
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relations from (2.23,C.12,C.14),

—N, = (1_fabfba/4)\/__g<>a (6213)
V=N = (14 f*foa/4) /=05, (6.214)

N = (g% — f)/=gs )/~ N, (6.215)
Nbc = (gbc + fbc + fbdfdc) V _No/ V=G0, (6216)

where

01 0 0
10 0 0
gab = g% = : (6.217)
00 0 -1
00 -1 0
o= f2in M (6.218)
—9o = / —det(ga) =1, (6.219)
TN, = /—det(Ny). (6.220)

Then we calculate the tetrad equivalent of the source-free field equations, which
consist of the symmetric part of the Einstein equations (2.31), and the Proca equation

derived from (2.33),

R(ab) + Mo N(ap) + Azgap = 0, (6.221)

e (R iapi + ApNpaplg) = 0. (6.222)

Great care is taken to ensure that everything is calculated to O(1/r?). To get prac-
tical computation time and memory usage when multiplying two expressions, it was
essential to determine the min and max powers of 1/r in each expression, and then
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to truncate them to the lowest power of 1/r required for their product to be accurate
to O(1/r?). The calculation of the symmetric field equations (6.221) was checked by
doing the calculation another way, using the ordinary Ricci tensor R,, = R}, from
(6.211), together with an expression for Ry — Ryp similar to G — Gy from (2.67).
The calculation of the Proca equation (6.222) was also checked in a similar manner,
using the approximate Proca equation (2.81).

Now let us consider the solution of the field equations for the speed-of-light prop-
agation case where k = w and we do not require 2A, = w? — k2. The solution is
implemented in the subroutine solvekeqw(). Let us call the O(1/r) and O(1/r?) Ein-
stein equations 1 Fy, and 5 Fy, and the Proca equations 1 P, and 5 P,. Looking first at

the O(1/r) field equations we find that

1By = 0%y /0u® =0, (6.223)

\Ei3 —1Fyy = 0%as/0u? = —V/2sin(0)0%¢] Jou?, (6.224)
\Eis+1Fy = 8%ay/0u? = —v20%¢, Jou?, (6.225)
1B = 0% /0w’ = —sin(0)9%c, ) ou?, (6.226)

P = Ohy/du=0. (6.227)

This solves the field equations to O(1/r).

The O(1/r?) equations impose similar requirements as the O(1/r) equations, but
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are more restrictive,

oy = 8&1/314 =0, (6228)
ol —oFsy = 8&3/8u = —\/58271(9)80/1//8’&, (6229)
2E23 + ooy = 8a2/8u = —\/586/1/811, (6230)

Applying these requirements, Fs3 then requires that either a; = 0 or

0*c,/ou* =0 and 0*cy/0u* = —sin(0)0*cy/Ou’. (6.231)

Following [54] we will concentrate on the case a; = 0. Then we find that

9F34 = ¢4 /0u = —sin(0)0cy/u. (6.232)

The remaining field equations do not put any constraints on O(e) parameters (a;, b;, ¢;, h;),
but they can instead be solved to get complicated expressions for O(e?) parameters

(A, Bi, C;, H;) in terms of O(e) parameters

Py = O°Hy/ou”, (6.233)

2By = 07A1 /007, (6.234)

2B = 0°CY /o, (6.235)

oE13 — 9By = 0°CY/ou?, (6.236)
oFi3s +oFy = 820{/6'&2 (6237)

Substituting these expressions solves all of the field equations to O(1/r?).
Note that the only requirement on the dual potential is that hy is a constant, and

we are free to set h; =0 since h,, is a potential. The remaining components hg, ho, h3
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are all arbitrary functions of u, 6, ¢, which is to be expected since plane waves in
flat space can have any shape and angular pattern. Also, we find that F,, = f,; to

O(1/r?). The Proca field and the electric and magnetic fields are,

6, = 0, (6.238)
1  Ohs 1 0hs
E, = Ey = —-—, By=—-—+ 2
" 0, Fo rsin® ou’ ? r Oou’ (6.239)
1 0hs 1  Ohs
" 0, By r ou’ " rsinf Ou (6.240)

We define the “effective” energy-momentum tensor as 871y, = G4, where Gy, is
the Einstein tensor formed from the symmetric metric. With T* = e, *T%¢;" we
set Py =T%, P, =T" By =T%r, P, =T%rsin6, where the factors r and rsin 6

account for basis vector scaling. The resulting energy and power densities are

ohy\* ., Ohs\*
<8u) sin 6’—}—(%

The ¥y Weyl tensor component is O(1/r), indicating the presence of gravitational

1
 4mr2sin26

Py = P , Py=P,=0. (6.241)

radiation,

1 0%, D) D3
Vo= —— (25m @W —isind gz 8u2> . (6.242)

The functions ¢, ¢, ¢§ are arbitrary functions of u, 6, ¢. The Weyl tensor component
U, is O(1/r?), and Uy, U3, U, are of higher order in 1/r, which indicates the start of
peeling behavior. Our calculations were only done to O(1/r?), so we could not verify
the peeling behavior beyond this order. Note that this peeling behavior is opposite to
the usual behavior because we have made our tetrads consistent with [54]. As shown

in [64], the tetrad transformation e', <+ 2, has no effect on the metric but causes
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the exchanges Wy <> Uy, W3 <> Uy, and this transformation would make our results
conform to the usual convention.

Finally, it happens that our O(1/r?) solution for the tetrads and electromagnetic
field solves the O(1/r?) Einstein-Maxwell field equations. Therefore, from the stand-
point of a Newman-Penrose 1/r expansion of the field equations, LRES theory is
identical to Einstein-Maxwell theory to O(1/r?) for speed-of-light propagation.

Now let us consider the solution of the field equations for the case k < w where
we require 2A, =w?—k?, and 2A, = mass? of possible Proca radiation. The solution
is implemented in the subroutine solvekltw(). Again we call the O(1/r) and O(1/r?)
Einstein equations | Fy;, and 5 F,;, and the Proca equations 1 P, and 5 P,. We will start
with the O(1/r) equations. In the following, the requirements actually involve 2nd
derivatives with respect to u but we are integrating them once with zero constant of
integration. This has the effect of excluding possible tetrad solutions involving linear

functions of u, which is justified by the bad behavior of such solutions as t — co.

1FE33 + 1Ey+21F34 = 0cy/0u = 0, (6.243)

\ By + 1By —2, sy = 91 /0u = 0, (6.244)

1F33 — 1By = 0c;/0u = —sin00c, /Ou, (6.245)
1By = ap = (2by —4a)(w — k)/(w + k) for some a(d, ¢), (6.246)

VB34 1By = 0¢,/ou=[2(w—k)dbs Ou—(w+k)das/Ou] /(2v/2w), (6.247)

\Frs — 1By = 0 Jou=[2(w—k)dbs/du— (w+k)das/0u]/(2v/2wsinb). (6.248)
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In the following I am not integrating with respect to u because h,, is a potential,
2Py — 1P, or 21P, 4+ P = 0% /ou* + w?d*h,/Ou® =0, (6.249)
= h; = ﬁlsin(wu + le) +hy + ﬁlu, (6.250)
\P3+1P = 0*hy/Oout + w?0*hy/Ou* = 0, (6.251)
= hy = hysin(wu + hy) + ho + hou, (6.252)
\Ps— 1Py = 0hsg/0u* + w?0%hs/0u? = 0, (6.253)

= hg = hgsin(wu + hs) + hs + hsu. (6.254)

Here hy, ho, hs are constants, and Ay, hy, ﬁl,ﬁg, ho, izg,ﬁg, hs, hs are dependent only on

0, ¢ and not on “u”. But with the terms linear in u, some components of f;, become
. Oh, . Ohy  Oh\ 1 (0H,
1 (oh oy Ohy OH,
= —— | = h + H 2
fou <a¢sm(wu+ 1) + 90 +u ng) (8¢ 3), (6.256)
., _ Ohg Ohy _ 0Ohg
[ = 50 2 sin(wu + hs) + 50 +u 20
ohy v 8h2 8h2 0H; 0H,
- hy) — — — - —]. 2
9 sin(wu + hg) 90 8¢ ( 50 9 ) (6.257)
To get good behavior as t — oo we have
fiyand fi, = hy = hy = constant, (6.258)

fi = hy = wds(0,0)/00 + hy(0), hs = wds(0,$)/0¢ + hs(¢), (6.259)

where we are using the new variables s(6, ¢), ha(6), hs(®), hi. We may also let iy = 0
without any loss of generality. This solves the field equations to O(1/r).

For the O(1/r?) equations if we let

5(6,6) = — (f(e, o) [ fayio - [ 63<¢>d¢>, (6.260)
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then the following combination of the Proca equations gives

. 2P1 22P2 WT28in20
0 = (w_k+w+k) T (6.261)
f(0,9) ¢) | gO0.0)\ v s
o 9% ( 50 ) + hyw sin“0, (6.262)
where hy = hyw/(w? — k?). This is solved by assuming
f0,0) = v(0,9)+0(0), (6.263)
05(0)/00 = (whicos + hy)/sinb, (6.264)

where /; is another constant. Then v(0, ») must satisfy the generalized Legendre

equation for [ =m =0

O a(gf? .9) + s n@% ( nQW) =0, (6.265)
which has the unique solution
v(6, ¢) = (Yoo spherical harmonic) = constant. (6.266)
Therefore we have
af(0,9)/06 = 0, (6.267)
Of(0,0)/00 = (whycos®+ hy)/sinb. (6.268)

Now let us look at another component of f,,

fis = howcos(wu + hy) + (6.269)

u 00) 1200

sin 0

(ﬁlw cos 0 + f/Ll) 1 (8H2 8h0) 1 8H0
r

To make f; finite for @ = 0 or 7 (the z-axis) we must have h; = 0 and h; = 0.

Applying these results and forming a combination of the Einstein equations gives,

+ h3sin®0 + h3.  (6.270)

0= — 22E11 2E34 4T28in29 _ ﬁ%wzst@
wt+k w—k/) Aw+k)(w?—k?) w? — k2
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The sum of positive numbers must be positive so this requires hy = hy = hg = 0.

Therefore hq, ho, hz have no wavelike component but are just functions of € and ¢.
From the above result we can tell that there are not going to be any Proca wave

solutions. However let us continue to solve the equations and see what we get. Next

we look at some additional combinations of the Proca equation

Oy | LO°Hy | Ohy o0k

P = Tt +w 507 55 Y oy 0, (6.271)
HHy,  ,02Hy,  &*hy 0%

2Pt b ot T 0w T a0w Y dou (6.272)
OHHs  ,0%°Hs  9*%hg ., 82hg

2Py —2Py = o Wi 9006~ 9000~ (6.273)

These have the general solution,

ho = —0H/0u+ hosin(wu + ho) + ho, (6.274)
H2 = —6H1/60 + HQSiTL((UU + Hg) + ]‘TIQ -+ ]:IQU, (6275)
Hg = —(‘3H1/8qb+ﬁ35m(wu+ﬁ3) +I~{3+H3u. (6276)

Here hg, Ho, Hy are constants, and l_zo,ﬁo,ﬁo,ﬁg,ﬁg,ﬁg,ﬁg,ﬁ[g,ﬁg are functions of

only ¢, ¢, and not “u”. Looking again at f;, gives

10hy, 1, - . . ..

fis =~ g — ~5(Hasin(wu + Hy) + Hy + Hyu), (6.277)
10hy 1, . .

foi= —;a—g; — 5 (Hysin(wu + Hy) + Hy + Hyu). (6.278)

To get good asymptotic behavior as ¢ — oo requires Hy=H; =0.

The remaining field equations do not put any constraints on O(e) parameters
(a;, b;, ¢, h;), but they can instead be solved to get complicated expressions for O(€?)
parameters (A;, B;, C;, H;) in terms of O(e) parameters. Substituting these expres-
sions solves all of the field equations to O(1/r?).
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Again we define the “effective” energy-momentum tensor as 8771, = G, where
G is the Einstein tensor formed from the symmetric metric. With T# = e T e,”
we set Py =T, P, =T, Py = T%r, P, = T%rsin 6, where the factors r and rsin 6
account for basis vector scaling. The Proca field, electric and magnetic fields, power

densities, and Weyl scalars all indicate no radiation,

6, =0 to O(1/r), (6.279)
E,=FEy=F,=DB,=DBy=DBy= to O(1/r), (6.280)
Py=P,=Py=P;=0 to O(1/r?), (6.281)

U=V, =V, =U3=0, =0 to O(1/r?). (6.282)

The fact that all of the Weyl scalars vanish indicates that there is no gravitational
radiation, which is to be expected because we are requiring propagation at a speed
different than the speed-of-light. The lack of any 1/r component of 6, or 1/r* com-
ponent of P, indicates that there is no propagating Proca radiation. The Proca field
0, does have hocos(wu + hg) /> components, but this does not correspond to propa-
gating radiation and seems of little interest. Also, many of the functions contained
in these terms would probably be determined if we were to solve the field equations
to a higher order, and it is likely that this would cause these higher order terms to
vanish.

So the final result is that LRES theory does not have Proca-wave solutions, given
the assumed form of the solution. However, there is some uncertainty as to whether
this analysis really rules out Proca-wave solutions, because we may have put too
strong of a constraint on the form of the solution. For a wavepacket type of solu-
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tion, the wavepacket should be expected to spread out as a function of radius, and
it seems unlikely that this behavior could be represented by a simple 1/r expan-
sion. Also, for a continuous-wave type of solution, the analysis assumes a constant
speed of propagation, whereas one might expect the speed of propagation to slow
down due to the energy of the wave at smaller radii. There is another issue regard-
ing the propagation speed of Proca waves. The Proca equation is 2A,0, = — 0,4,
using a (1,—1,—1,—1) signature. The continuous-wave solution in flat space goes

as sin(wt — kz), where k < w and 27, = w? — k2.

From a quantum mechanical
viewpoint we have mass? = h*2A, = (hw)? — (hk)? = energy® —momentum?, so the
“particle” velocity would be v ~ momentum /mass = hk/(hv2A,) = k/Vw?—k2 < 1,
which is below the speed of light. This is consistent with the group velocity which
iS Vgroup = dw/dk = k/\/m < 1. However with k£ < w the phase velocity is
Vphase = w/k = v2A,+k2/k > 1, so the wavefront (and our retarded coordinate) is
travelling at greater than the speed of light! This does not seem right. It makes one

wonder if we are not finding a continuous-wave Proca wave solution simply because

they are somehow inconsistent with even ordinary general relativity.
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Chapter 7

Extension of the

Einstein-Schrodinger theory for

non-Abelian fields

7.1 The Lagrangian density

Here we generalize LRES theory to non-Abelian fields. The resulting theory incorpo-
rates the U(1) and SU(2) gauge terms of the Weinberg-Salam Lagrangian, and when
the rest of the Weinberg-Salam Lagrangian is included in a matter term, we get a
close approximation to ordinary Einstein-Weinberg-Salam theory. Einstein-Weinberg-

Salam theory can be derived from a Palatini Lagrangian density,

1 v
L5 Gor Av) = —16=V=0[¢" Run(T) + 20

1 ol v
too VY tr(Fpag™' 9" Fou) + Lo(Gu, Av, 0,0+ ), (7.1)
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where the electro-weak field tensor is defined as

1€

Fl/L = 2 v aE
! A + 2hsinb,,

(A, A, (7.2)

The Hermitian vector potential A, can be decomposed into a real U(1) gauge vector

A, and the three real SU(2) gauge vectors b,

A, = IA, + o, (7.3)

where the o; are the Pauli spin matrices,

1 0 01 0 —2 1 0

I= y 01 = y 02 = y 03 = ) (7-4)
01 1 0 1 0 0 -1

[0, 0] = 2i€;50%, O'ZT =0y, tr(o;) =0, tr(oo;) = 2(5;. (7.5)

The L,, term couples the metric g, and vector potential A, to a spin-1/2 wavefunc-
tion 1, scalar function ¢, and perhaps the additional fields of the Standard Model.
Here and throughout this paper we use geometrized units with ¢ =G =1, the sym-
bols () and [] around indices indicate symmetrization and antisymmetrization, and
[A, B|=AB—BA. The constant 6, is the weak mixing angle and Ay is a bare cosmo-
logical constant. The factor of 1/2 in (7.2) results because we are including A, and
b, in one gauge term tr(F,,g*"g"F,,), and because we are using o; instead of the
usual 7; = 0;/2.

The original Einstein-Schrodinger theory allows a nonsymmetric N,, and fp); in
place of the symmetric g,, and F;‘T, and excludes the tr(F,,g**g”"F,,) term. Our

“non-Abelian A-renormalized Einstein-Schrodinger theory” introduces an additional

cosmological term g¥2¢A, as in (2.2), and also allows ffj“ and N,, to have dx d matrix
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components,

~ 1 ~
LI Nyr) = “16n Nl/Qd[tr(N_wyRVu) +d(n—2)A, ]
1
_16_77' g1/2dd(n_2)Az + Em(g;wa -/41/7 % ¢ e )7 (76)

where Ay~ —A, so that the total A matches astronomical measurements|48|
A=A+ A, ~10"5em 2, (7.7)
and the vector potential is defined to be

A, =10, /I(n —1)y/=24, ). (7.8)

The L, term is not to include a tr(F,,g*"¢*"F,,) term but may contain the rest of
the Weinberg-Salam theory. Matrix indices are assumed to have size d=2, and tensor
indices are assumed to have dimension n=4, but we will retain “d” and “n” in the

equations to show how easily the theory can be generalized. The non-Abelian Ricci

tensor is
zfz _ fa . fa + lf\a fa + lf\a fw _ fa f\a _ /I:‘[:—'V]/f[’;#} (7 9)
v Tt vpa (a(v),p) 9 vu (oa) 92 (oca)™ vu vat op (n_1> : :

For Abelian fields the third and fourth terms are the same, and this tensor reduces
to the Abelian version (2.5). This tensor reduces to the ordinary Ricci tensor for

e

] = 0 and @ | = 0, as occurs in ordinary general relativity. Let us define the

aly,p

symmetric tensor gt by
gV2dghy — NY2d ) (7.10)

Note that (7.10) defines g"” unambiguously because g = [det(g¥/??g")]?/"=2). The
“physical” metric is denoted with a different symbol g,,, and in this paper we will
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just be assuming the special case g,, = Ig,,. The symmetric metric is used for
measuring space-time intervals, covariant derivatives, and for raising and lowering
indices. If we did not assume g, = Ig,,, we would need to choose between several

metric definitions which all reduce to the definition (2.4) for Abelian fields,

V=99 =tr(g"*g")/d or ¢¥=tr(g")/d or g, =tr(g,)/d  (T.11)

and we would also need to choose between

g%\, or —gA. (7.12)

in the Lagrangian density (7.6). These definitions are all the same with the assump-
tion g, =1g,,, so we will not choose between them here.

The determinants g = det(g,,) and N =det(N,,) are defined as usual but where
Ny, and g,, are taken to be nd x nd matrices. The inverse of N, is defined to be
N Wkvi = (1/N)ON/ON,; where i,k are matrix indices, or N = (1/N)ON/ON,,
using matrix notation. The field N satisfies the relation N W’“”’IN,,W = (555}“, or
NN, = §# using matrix notation. Likewise g, is the inverse of gt such that
g"g,, = 0*1. Assuming N,, = TN, T# for some coordinate transformation T% =
dx¥ /07, the transformed determinant N =det(N,,) will contain d times as many T
factors as it would if N,, had no matrix components, so N and g are scalar densities
of weight 2d. The factors N¥2¢ and g¥?? are used in (7.6) instead of v~N and /—g
to make the Lagrangian density a scalar density of weight 1 as required. Note that

with an even d, we do not want the factor of —1.

For our theory the electro-weak field tensor f“* is defined by

gl/2d i — § NY/2d Al A%)/z/\/i (7.13)
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Then from (7.10), g and f* 2@Ag1/2 are parts of a total field,
(N/g)V2NWi = gy frv/2 N2, (7.14)

We will see that the field equations require f,,~2Ay,. + v—2A,[A,, A,] to a very
high precision. From (7.2,2.3) we see that this agrees with Einstein-Weinberg-Salam

theory when

1 2
—A, = A, ( ‘ ) =3 a = 1.457 x 10%%cm ™2, (7.15)

2 2hsind,, 251020,
where [p=/Gh/c3=1.616x10"33cm, a=¢%/hc=1/137 and sin® f,,=.2397.

It is helpful to decompose f,fu into a new connection f‘j‘u, and A, from (7.8),

re, = T¢, + (00A,— 65 A,V —2A, (7.16)
where [g, = T9 + (6017, — 0017,/ (n—1). (7.17)

By contracting (7.17) on the right and left we see that f;ﬁ‘u has the symmetry
Lo =Tgn =02, (7.18)

so it has only n®—n independent components. Substituting the decomposition (7.16)

into (7.9) gives from (R.16),

Ron(@) = Rou(D) + 244,07 —20 + 204[A,, A,]

+ (e, T8 = [Aw T8 V=24, . (7.19)

Using (7.19), the Lagrangian density (7.6) can be rewritten in terms of fg‘# and A,
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from (7.17,7.8),

1

L = —16—7TN1/2d tr(N" (Rt 240 0/ =20+ 204 [ A, A,
+ ([Aas T3] = [Aw, T )V =244 ) + d(n—2)A,
1
_E gl/Qdd(n_2)Az +£m(guV7Aa>¢ea¢' o ) (720)

Here R,,, =R,,(T), and from (7.18) our non-Abelian Ricci tensor (7.9) reduces to

Ry = [%.,—T%, . +i07 Fo 4 1o po _ fo po (7.21)

VL0 9 vKToa 9 oot vp var op’

From (7.16,7.18), ff}# and A, fully parameterize fl‘}u and can be treated as indepen-
dent variables. The fields N2 N %) and NY24 N4 (or gv# and f*#) fully parame-
terize NV,,, and can also be treated as independent variables. It is simpler to calculate
the field equations by setting 5£/5I~“‘ju =0, 0L/0A, =0, 6L/S(NVHN ) =0 and
SL/(NV2NI]) = 0 instead of setting (5£/5fﬁ‘u =0 and 6L/0N,, =0, so we will

follow this method.

7.2 Invariance properties of the Lagrangian den-
sity

Here we show that the Lagrangian density is real (invariant under complex conjuga-
tion), and is also invariant under U(1) and SU(2) gauge transformations. The Abelian
Lambda-renormalized Einstein-Schrodinger theory comes in two versions, one where
fﬁu and N, are real, and one where they are Hermitian. The non-Abelian theory

also comes in two versions, one where [} and N, are real, and one where they have
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~

nd x nd Hermitian symmetry, I/, = re, . and N;

a _ ) . .
v iuk = Nukvi, where i,k are matrix

indices. Using matrix notation these symmetries become

ror=ref, Ter=19r N;,=N., NWr=NT (7.22)

y72 7 puy o o

where “T” indicates matrix transpose (not transpose over tensor indices). We will
assume this Hermitian case because it results from A, <0, A, >0 as in (2.12). From

(7.22,7.10,7.13,7.8) the physical fields are all composed of d x d Hermitian matrices,

g =g, g =g [=1T L=t Ton =T, A=A (7.23)

w— Jops Vi)

Hermitian f,, and A, are just what we need to approximate Einstein-Weinberg-
Salam theory. And of course g"* and g,,, will be Hermitian if we assume the special

case where they are multiples of the identity matrix. Writing the symmetries as

*

vipk = Nukvis  8ip = 8ukpi = Bukwi> and using the result that the determinant of a

Hermitian matrix is real, we see that the nd x nd matrix determinants are real
N*=N, g'=g, ¢ =g (7.24)

Also, using (7.22) and the identity M M] = (MyM;)" we can deduce a remarkable
property of our non-Abelian Ricci tensor (7.9), which is that it has the same ndxnd
Hermitian symmetry as fﬁu and N,
S AT
Ry =R (7.25)
From the properties (7.25,7.22,7.24) and the identities tr(M; My) =tr (Mo M), tr(MT) =

tr(M) we see that our Lagrangian density (7.6) or (7.20) is real.
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With an SU(2) gauge transformation we assume a transformation matrix U that

is special (det(U)=1) and unitary (UTU =1). Taking into account (7.3,7.8,7.16), we

assume that under an SU(2) gauge transformation the fields transform as follows,

1

B, UB, U™ — N u,ut, (7.26)
A, — UAU™ - %Ab U,U, (7.27)
A, A, (7.28)
re, UTe, U™ +280U, U7, (7.29)
I ure, U™, (7.30)
e, U, U™ + (n—1) U, U™, (7.31)
re, urg, U, (7.32)
N, UN, U™,  g,—Usg, U, fu.—=Uf, U™, (7.33)
N7 UNWwy=t g 5 Ug™U™, s UfU. (7.34)
Under a U(1) gauge transformation all of the fields are unchanged except
A, = A+ \/%Ab O (7.35)
A, = A+ \/;_Ab o0, (7.36)
re, — 9, — 20, (7.37)
Ty — Ty — (1)l (7.38)
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Writing the SU(2) gauge transformation (7.33) as

U 0 0 0 Noo No1 Noa Nos Ut 0 0 0

0O U 0 O N10 N11 ng N13 0 U_l 0 0
N = (7.39)

v
0 0 U 0 N20 N21 N22 N23 0 0 U_l 0

0 0 0 U Nsg Ni3; N3y Nss 0 0 0 Ut
and using the identity det(M;My)=det(M;)det(M;), we see that the ndx nd matrix

determinants are invariant under an SU(2) gauge transformation,
N—N, g—g g—g. (7.40)

Another remarkable property of our non-Abelian Ricci tensor (7.9) is that it trans-

forms the same as N,,, under an SU(2) gauge transformation (7.29), as in (R.11),
Ruu(UTS U™ 42600 1U™) = UR,,(TS,) U™ for any matrix U(a?).  (7.41)

The results (7.40,7.41) actually apply for a general matrix U, and do not require that
det(U)=1 or UTU =I. Using the special case U = Ie~* in (7.41) we see that our
non-Abelian Ricci tensor (7.9) is also invariant under a U(1) gauge transformation,

~

Ru(D% — 201 6%0.17) = Ry(L8

o) forany p(z7). (7.42)

From (7.41,7.33,7.40,7.42) and the identity tr(MyMsy) = tr(MsM;) we see that our
Lagrangian density (7.6) or (7.20) is invariant under both U(1) and SU(2) gauge
transformations, thus satisfying an important requirement to approximate Einstein-
Weinberg-Salam theory.

One of the motivations for this theory is that the A, =0, £,, = 0 version can
be derived from a purely affine Lagrangian density as well as a Palatini Lagrangian
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density, the same as with the Abelian theory in Appendix M. The purely affine

Lagrangian density is
L(T,) = [det(N,.)]V™, (7.43)
where N,,, is simply defined to be
Ny = R/ M. (7.44)

Considering that N = (1/N)ON/ON,,,, we see that setting 5£/5f/‘§‘T =0 gives the

same result obtained from (7.6) with A, =0, £,, =0,
tr[NoR,, /615 ] = 0. (7.45)

Since (7.43) depends only on fg‘f, there are no §£/6(NY?**N) =0 field equations.
However, the definition (7.44) exactly matches the §L/6(NY24N7 ) =0 field equa-
tions obtained from (7.6) with A, =0, £,, =0. Note that there are other definitions
of N and g which would make the Lagrangian density (7.6) real and gauge invariant,
for example we could have defined N = tr(det(N,,)) or N = Det(det(N,,)), where
det() is done only over the tensor indices. However, with these definitions the field
N =(1/N)ON/ON,, would not be a matrix inverse such that N"7"N,,=d71. Cal-
culations would be very unwieldy in a theory where N =(1/N)ON/ON,,, appeared
in the field equations but was not a genuine inverse of NV,,,. In addition, it would be
impossible to derive the A, = 0, £,, =0 version of the theory from a purely affine
Lagrangian density, thus removing a motivation for the theory. Note that we also
cannot use the definition N =det(tr(N,,)) as in [19] because (—det(tr(N,,)))"/? and

(—det(tr(ﬁw)))l/ 2 would not depend on the traceless part of the fields.
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7.3 The field equations

Let us calculate the field equations for the following special case,
ry, =ty )1/d, g, =tr(g,.)I/d (7.46)

In this case A, and N2 N4 are the only independent variables in (7.20) which are
not just multiples of the identity matrix /. This assumption is both coordinate inde-
pendent and gauge independent, considering (7.32,7.34). We assume this special case
because it gives us Einstein-Weinberg-Salam theory, and because it greatly simplifies
the theory. With the assumption (7.46) we also have R,, = tr(R,,)I/d, and the
term ([A,, fl‘f#] - [Aw, fz)a])\/TAb vanishes in the Lagrangian density (7.20). And
as mentioned initially, with the assumption (7.46) several metric definitions such as
(7.11) are the same, so we need not choose one or the other. It would be interesting
to investigate the more general theory described by the Lagrangian density (7.6,7.20)
without the restriction (7.46). However, it is important to emphasize that any solu-
tion of the restricted theory will also be a solution of any of the more general theories
which use one of the metric definitions (7.11).

Setting 0L/0A, = 0 and using the definition (7.13) of f** gives the ordinary

Weinberg-Salam equivalent of Ampere’s law,
(gl/zdeT)7w . _2Ab g1/2d[fw7’ Aw] _ 47Tg1/2djT, (747)

where the source current j7 is defined by

. —16L,
] = g2 5 A (7.48)
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Setting 5£/5ffp = 0 using a Lagrange multiplier term tr[pr[’;p]] to enforce the
symmetry (7.18), and using the result tr[(g?/?1f7) ] = 4wg??¥r[j7] derived from
(7.47,7.3,7.5) gives the connection equations,

tr[(Nl/QdN—Vrr),ﬂ + f;5N1/2dN_|pJ + f\gUNl/ZdN—bT . fgaNl/sz_|pT]

1/2
(n_l)Ab/

507, (7.49)

Setting §L/6(NY2N7#)) = 0 using the identities N = [det(N Y2 N))2/(n=2) and
g=[det( NV N7w))]2/(n=2) gives our equivalent of the Einstein equations,

tT['R(,,M) + AbN(Vu) -+ Azgw] = 87TtT[SV“], (7.50)

where S, is defined by

0L 0Ly,
SVN = 25(N1/2dN(ﬂV)) - 25(g1/2dgl/f’/) . <751)

Setting JL/6(NY?N ]y = 0 using the identities N = [det(NY2A N7 #))2/(n=2) and

g=[det( NV Nw))]2/(n=2) giyes,
Rivu+ 2A10V =20+ 20[A,, A,] + ANy = 0. (7.52)

Note that the antisymmetric field equations (7.52) lack a source term because L,, in
(7.20) contains only g¥2?gh” = N2 N4) from (7.10), and not NY2¢ N4 The trace
operations in (7.49,7.50) occur because we are assuming the special case (7.46). The
off-diagonal matrix components of 6£/6I%, and 6L£/5(NV2AN7)) vanish because
with (7.46), the Lagrangian density contains no off-diagonal matrix components of
ff ,and N 1/2d NH) - The trace operation sums up the contributions from the diagonal
matrix components of I'}, and NV2AN ) because (7.46) means that for a given set
of tensor indices, all of the diagonal matrix components are really the same variable.
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To put (7.47-7.52) into a form which looks more like the ordinary Einstein-
Weinberg-Salam field equations we need to do some preliminary calculations. The
definitions (7.10,7.13) of g,,, and f,,, can be inverted to give N,, in terms of g, and

fuu- An expansion in powers of Agl is derived in Appendix C,

1 Pof? _ _
N(Vu) = gw —2 <fa(1/f,u)a - 2(71-2) gyutr(fdf p)>Ab1 + (fs)Abg/Q e (753)

N = [ouV2il, 7 + (FHN (7.54)

Here (f3)A,*% and (f2)A; " refer to terms like f%, [, f),N,>> and fop, fuoeAy "
Because of the assumption (7.46) and the trace operation in (7.49), the connec-

tion equations (7.49) are the same as with the Abelian theory (2.55) but with the

substitution of ¢r(f,,|/d and tr[;j*]/d instead of f,, and j”. Therefore the solution of

the connection equations from (2.38) can again be abbreviated as

Ley = IT0, + (f'HN . Loy =N, (7.55)

(vp

where I'} is the Christoffel connection,

I = 59" (Guow + Govp — Gopo)- (7.56)

N |

Substituting (7.55) using (R.4) shows that as in (2.39), the Non-symmetric Ricci

tensor (7.21) can again be abbreviated as
Row = IR+ ()N + (FFN ... R = (f)N,2 ... (7.57)
where R,, = R,,(I') is the ordinary Ricci tensor. Here (f'f)A;', (ff")A,' and

(]”’)Agl/2 indicate terms like tr(f",,;a)tr(fau;g)Agl, tr(fon)tr(fr, u);a)Agl and tr(f[l%a};a)/\;lm.
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Combining (7.53,7.57,2.3) with the symmetric field equations (7.50) and their

contraction gives

G = 87T”(T”“)+2<trw§f“)0) igHW)

= 1) g+ UM+ (PPN + (I, (758)

where the Einstein tensor and energy-momentum tensor are

1 o 1 o
GVM = Ruu — 59,,“ Ra? TVM = SVM— §gVNSa' (759)

Here (f3)Agl/2, (f'fA; ! and (ff")A," indicate terms like fpaf"(uf,,)pAgl/g, tr(f7.0)tr(fe

and tr(fo7)tr(fr(:w.0)A\; ' This shows that the Einstein equations (7.58) match
those of Einstein-Weinberg-Salam theory except for extra terms which will be very
small relative to the leading order terms because of the large value A, ~ 10%3cm =2
from (2.12).

Combining (7.54,7.57) with the antisymmetric field equations (7.52) gives

Fou = 2Apm+ V=20 [Ay, A+ (PN + (N (7.60)

Here (f?)A, 2% and (f")A," indicate terms like f7p, fuoA," and tr(fiu.al; )/Yl/2
From (2.12) we see that the f,, in Ampere’s law (7.47) matches the electro-weak
tensor (7.2) except for extra terms which will be very small relative to the leading
order terms because of the large value Ay~10%cm™2 from (2.12).

Finally, let us do a quantitative comparison of our non-Abelian LRES theory to
Einstein-Weinberg-Salam theory. If A, is due to zero-point fluctuations we would
usually expect Ay ~wil%~10%cm =2 with cutoff frequency w.~1/lp as in (2.12,2.13).
Our A, from (7.15) is consistent with this interpretation with a cutoff frequency
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we~a/Y/lp, which is just as reasonable as w.~1/Ip as far as anyone knows. For the
Abelian LRES theory with A, ~ 10%cm =2, we showed in §2.4 that the higher order
terms in the Einstein-Maxwell field equations were <1076 of the ordinary terms for
worst-case field strengths and rates of change accessible to measurement. Therefore,
for non-Abelian LRES theory with Ay =1.457 x10%¢m ™2 from (7.15), the higher order
terms in the field equations will be <1073 of the ordinary terms for worst-case field
strengths and rates of change accessible to measurement. This is far below the level
that could be detected by experiment.

One aspect of this theory which might differ from Einstein-Weinberg-Salam theory
is the possible existence of Proca waves, as discussed at the end of §2.4 for the purely
electromagnetic case. The only change for the non-Abelian case is that A, is fixed,
so we cannot use the argument that the potential ghost goes away in the limit as
we — 00, Ay — 0o. If Proca-waves really do exist in the theory, it is possible that
they could be interpreted as a built-in Pauli-Villars field as discussed in §2.4 and
Appendix K. Finally, we should mention again that this theory would differ from
Einstein-Weinberg-Salam theory if we do not assume the special case (7.46) where
g’* and fﬁu are restricted to be multiples of the identity matrix. Further work is
necessary to compare this more general theory to experiment for reasonable choices
of the metric definition (7.11). Some preliminary work on this topic can be found in

Appendix X.
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Chapter 8

Conclusions

The Einstein-Schrodinger theory is modified to include a cosmological constant A,
which multiplies the symmetric metric. This cosmological constant is assumed to
be nearly cancelled by Schrodinger’s “bare” cosmological constant A, which multi-
plies the nonsymmetric fundamental tensor, such that the total “physical” cosmo-
logical constant A = Ay + A, matches measurement. The resulting A-renormalized
Einstein-Schrodinger theory closely approximates ordinary Einstein-Maxwell theory
when |A,| ~ 1/(Planck length)?, and it becomes exactly Einstein-Maxwell theory in
the limit as |[A,| = co. In a similar manner, when the theory is generalized to non-

Abelian fields, a special case closely approximates Einstein-Weinberg-Salam theory.
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Appendix A

A divergence identity

Here we derive (4.4) using only the definitions (2.4,2.22) of g,, and f,,, and the

identity (2.56),

1 3 e
1, 3., o
= 597" Nwyo + Nuoyp = Nmy) = 557 Nogu V218, (A.2)
1 v g g
2 \/— [Nﬂ 2 (N(PV);U + Nwoyip — N(pa);l/) — 3N }N[opw]] (A.3)
1 \ g, g
2 \/_ [ _| p(N(PV)§U + N(VO')QP - N(PO')W) + 3N—{ pN[pV;aﬂ (A4)
_1V~N
2 \/_N%Up(NPV;U + Nvo;p - NpG;V) (A-5>
1vV=N
=3 [N ?(Npvio + Nuoip) = N7 (Npoy — T Naw — T9,N,a)|  (AL6)
1V=N 1
= —— >~ —(N"“’ N, +N" N,,)— ——(V-N)., A7
1[/vV=N V=N
S K_ N*’”);JNW - (—N*(’p);p]\fw] (A.8)
2 [\v-y V=g
1 _ _
= =5 (07 + VRN Ny + (97 + FVRIN) NG (A)
— [P N V2N, . (A.10)
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Appendix B

Variational derivatives for fields

with the symmetry f[iw] =

The field equations associated with a field with symmetry properties must have the
same number of independent components as the field. For a field with the symmetry

Ie

o] = 0 the field equations can be found by introducing a Lagrange multiplier (2#,

0= (5/(/; + QY )d . (B.1)

Minimizing the integral with respect to Q* shows that the symmetry is enforced.

Using the definition,

AL oL oL
Lo (o) 5
Al'z, 0OI'%, [0) ey
and minimizing the integral with respect to ffp gives
AL o or AL 1, .
0= Affp + Q“(Sﬁé[uég = E + 5(9 0 — 0552°). (B.3)
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Contracting this on the left and right gives

g2 AL 2 AL
_(n—l)Afgp_ (n—1) AT,

Substituting (B.4) back into (B.3) gives

AL 0F AL o5 AL

AT}, (n—1)Al2, (n—1)ATe,

(B.4)

(B.5)

In (B.4,B.5) the index contractions occur after the derivatives. Contracting (B.5) on

the right and left gives the same result, so it has the same number of independent

components as ffj,,. This is a general expression for the field equations associated

with a field having the symmetry f[(;fw} =0.
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Appendix C

Approximate solution for NV, in

terms of g,, and [,

Here we invert the definitions (7.11,7.13) of g,, and f,, to obtain (7.53,7.54), the
approximation of N,, in terms of g,, and f,,, and we also do the same for Abelian

fields as in (2.4,2.22) and (2.34,2.35). First let us define the notation
Fre=prev2i Y (C.1)

We assume that |f x| < 1 for all components of the unitless field fv u, and find a
solution in the form of a power series expansion in f Yo

We will first consider the problem for non-Abelian fields. For the following calcula-
tions we will treat the fields as nd xnd matrices but we will only show the tensor indices
explicitly. Lowering an index on the right side of the equation (N/g)Y?N "+ = ghvfr

from (7.14) we get

(N/g)'PIN, = 61T — fra. (C.2)
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Using f®, =0, the well known formula det(e™) = exp (tr(M)), and the power series

In(l—z) = —z —2?/2 —23/3... we get[85],

n(det(T=f)) = trlin(I=)) = 5 tr(F%f7) +(F) .. (C3)
Here the notation (f?) refers to terms like ¢r(f7o f®, f7,). Taking In(det()) on both
sides of (C.2) using the result (C.3) and the identities det(sM) = s"¥det(M) and
det(M~1)=1/det(M) gives

In(det{(N/8)*N ) = In(N/g)"*) = — tr(Fef7) + (7% ..., (C4)

1

tr(fofo,) +(f*).... (C.5)

Taking e on both sides of this and using e* = 1+ z + 2%/2... gives

1

tr(ffaf7p) + (f%) ... (C.6)
Using the power series (1—z)'=1+z + 2%+ 2®..., or multiplying by (C.2) on the
right we can calculate the inverse of (C.2) to get[85]

(g/N)V¥NY,, = 88T + [+ fof 0+ (FP). ... (C.7)

Lowering this on the left gives,

Now = (N/@)Y* (g, + for+ foofTu+ () ... (C.8)

Here (f3) refers to terms like fyaf"‘gf”#. Using (7.46,C.8,C.6,C.1) we get the result
(7.53,7.54).

Now let us redo the calculation for Abelian fields. Lowering an index on the

equation (VEN/y/—g )N = gvi fvi from (2.4,2.22) gives



Let us consider the tensor f”a = f’“’g,,a. Because ¢, is symmetric and f’“’ is an-
tisymmetric, it is clear that faa = 0. Also because f,,g f"u is symmetric it is clear
that f”gf””f“l, = 0. In matrix language therefore tr(f)=0, tr(f*)=0, and in fact
tr(f?)=0 for any odd p. Using the well known formula det(eM) = exp (tr(M)) and

the power series In(1—xz) = —x — 2%/2 — 23/3 — 21 /4 ... we then get[85],

In(det(I—f)) — tr(ln([—f)):—%fpaf"ij(f“)... (C.10)

Here the notation (f*) refers to terms like f7of% f7,f*,. Taking in(det()) on both
sides of (C.9) using the result (C.10) and the identities det(sM) = s"det(M) and

det(M~1)=1/det(M) gives

VN 1 NE2DY 1
ln(\/__g> = (n_2) ln(g(n/2_1)> = mf o'f p+(f ) (C].l)

Taking e” on both sides of (C.11) and using ¢* = 1+ z + 2?/2... gives

E_ _ 1 £pof £4
= ooy fop +(f7) - (C.12)

=

Using the power series (1—xz)™' =1+ x + 22 + 2%..., or multiplying (C.9) term by

term, we can calculate the inverse of (C.9) to get[85]

\/__g v o __ SV Fv fv fo fvofp fo 2\
—\/__NNH_5#+f“+fafM+fpfafu+(f)~- (C.13)

Nuy === (gopu+ fou+ foofu+ foofPafu C.14
H(g + fou+ foofTu+ fupfPoffu+ () ..0) (C.14)

Here the notation ( f4) refers to terms like f,qf%, f"p fpu. Since f,,a f"u is symmet-
ric and f,,pfpafau is antisymmetric, we obtain from (C.14,C.12,C.1) the final result

(2.34,2.35).

128



Appendix D

Approximate solution for f‘y)‘u in

terms of g,, and [,

Here we derive the approximate solution (2.62,2.63) to the connection equations

(2.55). First let us define the notation

fyp,:fuu\/aiAgl/Q’ 5a:ja 22"/\;1/27 Tz(iu: 3 Tg‘#— o (D].)

(vp)> = Ly

We assume that | f”u| < 1 for all components of the unitless field f”u, and find a

solution in the form of a power series expansion in f”“. Using (2.59) and

fga _ (\/__N),a+ 8w V=9

V=N = (n=2)(n-1)~-N

7% Nipal (D.2)
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from (2.57) and f‘ﬁﬂzfﬁu—l—T‘” (V=N /\/=g )N = g"# 4+ 71 from (2.61,2.4,2.22)

v

we get

N - N
0 = YR v )
—g
8 N
— HIZvd
(n—1) <3 o T h—2)

VNN VEN - . .
= (?) ot f(%N T TR N — (D9, —T7 )N )
—g —g
8T
i1 gv) D.4
n—1)” % (D.4)

= (g™ )+ T (g A Y TG+ ) = T (g7 + )

8T 4
_ (1 sy D

= P T T g 4 T T YT = T

oT

3TN[TQ}NWV> (D.3)

A7

oy U = 2. (D.6)

Contracting this with g,,, gives

o o LT o __ 2 Y rTo
0= @ nT7 =200 70 = Tiu= g Tonaf ™ (D.7)

Lowering the indices of (D.6) and making linear combinations of its permutations

gives
L/ £ £T o o
Tauu = Tow,u + 5 (fl//,L;a +TV/,La +Tyraf o +T,ucw +T,ua7f1/ _Tgagu,u _Taafyu
4 47 (A. ~ )
(n_ 1) v9au JuGva
1 A A A A
- 5 (f;wc;u +T;wa/ +T;J,TVfTOL +Tauu +TaVTfuT _Tgugua _Tgyfuoa
+ 4 (A. ~ )
(TL— 1) JuGva JaGuv
1 7 R £oT o o 7
- 5 (foa/;u +To¢yy +Ta7'uf7—l/ +Twwz +TV/LTf04 _Tougow _Tcrp,fau
T . N
TN 'a v .1/ e . D8
b st~ o)) D)
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Cancelling out the T,,,, terms on the right-hand side, collecting terms, and separating

out the symmetric and antisymmetric parts gives,

_ U
Yavu = Tiar v + Tiasde ST + Yoy S o = 50090 + Vo9 (D9)

Y Y rT e rT 2 rT 1 o o f
Towu = _T(a,u)‘rf v+ T(au)ff I + T[V/L]Tf o §To'af1/ﬂ + Tg[yf,u}a
1 4 A A 1T -~
A \Jrua oy — Jav; VRN ‘1/ a- D.10
+2(f wa T Jou; J w) + (n—l)][ M| ( )

Substituting (D.9) into (D.10)

Y 1 Y% ro Y% ro Y ro 1 o o rT
Tovu —3 (T[m]of wt Yoo /e + Yuro /e = 5V oagur + TJ(,ugT)a> [
1 /% po ¥ po Y% ro 1 o o T
_§ (T[,uﬂaf at T[,ua]af r+ T(om-)crf wo §To'uga7' + Tg(ag‘r)u) f v
1/~ p . p . p 1 p
+§ (T[a‘r]ofau + T[al/]anT + T(VT)UJMO‘ - §Tgo‘gyT T Tg(VgT) ) fTH
1 v fo Y ro Y% ro 1 o o T
+§ T[I/T]O'f ot T[V{X]Uf r+ T(Oﬂ')o’f v §Tm/goc7' + To'(ag’l')l/ f ©
1 Y% ro Y ro Y ro o o rT
+§ <T[V7’]0’f pt T[VM]Uf 7t T(MT)Uf v _TUVgl” + TU(“QT)V) fa
1 Y ro Y ro Y ro o o rT
2 (T[uf}af v+ Lo f7r + Tono /T — _Taﬂg’” + TU(VgT)H) I
1 o r o r
_§Tao¢fl/ﬂ + TU[VfH]a

1 A A o 87T A
+§(fuu;a + fau;u - fau;u) + m][ugu]a

—_

= (Yaref "+ Voo fa) £

1/ N . N .
+§ (Towafau + TVTUfUOt> fTu

1 . R . N o N A~
+§ (Tr,ucrfgl/ + QT[VM]UfUT - TTVUfUH) fTa

1 c £ o rT
+§Tcraf#V+To'Tf [/.Lgl/]a

1 P o o 87T ~
+§(f1/u;a + fa,u;u - fau;u) + m][ugu]aa
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and using (D.7) gives,

Taz/,u = Tam—fgufTV + T(ua)rfgafTV - T(ua)TfUapr + T[Vu]afonTa

1 . R
+—To'7'afTUf,uu +

TU TApo- AT Vvia
n—2) o f7 F 1090

2
(n—2)

—~

1, 4 A p 8m
A \Jrua auwr — Jav; N ‘1/ - Dll
+2(f piee + fopw — fow) + (n—l)j[ u) ( )

Equation (D.11) is useful for finding exact solutions to the connection equations
because it consists of only n?(n — 1)/2 equations in the n?(n — 1)/2 unknowns Y,

Also, from (D.11) we can immediately see that

! 1. . . i . . .
Taup, = §(f11,u;a + fau;ll - fau;p) + m(jygua — jugya> + (fgl) e (D12)

Here the notation (f¥) refers to terms like farf7y f”[y;u]. With (D.12) as a starting
point, one can calculate more accurate T(wu by recursively substituting the current
’i‘aw into (D.11). Then this Taw can be substituted into (D.7,D.9) to get T,,,. For

our purposes (D.12) will be accurate enough. Substituting (D.12) into (D.7) we get

T = —uter + %@Vga)u —Guga) + () (D.13)
Tl = %fva;u + %ipgm + (. (D.14)

Yoo = ﬁ (%fw;a + %}ga]a) o+ (...
= 2(;_1 ) (f*Frp) o + m_f?ﬁffm +(f"y....  (D.15)
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Substituting these equations into (D.9) gives

27

Tau,u — < fa,ur + — ( 1) (jag,m— jugm—)> fTu

2m ~ -
( fLaT-+-( 1)(JygaT Jaguf)) I

A 2 ~ ~ ~ A
+ <_f7'(,u,;1/) + m(]uglﬁ + JvGur — ZJTQ;W)) f «
1
2

-1 8 -
- ( (fpafap),oz + T o J fTa) Gup

2(n—2) (n—1)(n—2)
-1 200 7 87 s »
+ <2(n_2)(f foo) v + h—D(n—2)’ fr(u) Gya + (fY) ...
B fT(VfM)a;T ! fanT(VW) i m ((fpaf"p)vag”u_ 2(fpafop>a(ugu)a>
dm (s 2 .
+(nj—2).f— (fa‘rgl/,u + mfr(ygu)a) + (f4 ) e (D16)

Here the notation ( fu ) refers to terms like forfTo f"p f (vy)- Raising the indices on

(D.16,D.12,D.15) and using (D.1) gives the final result (2.62,2.63,2.64).

o T o« far p 1 @ @
o, = [Tl + 1 frow + 4(n_2)(f, Gou = 2L w0p)
A~ [ 4 2 A
P fe —_— < mne. D.1
HTED (f o (n—l)f”"’(s’“> U (B17)
Toz L 2 a Fo Fo 8w - a 31
vp T Q(fvu; + S = o) + m][’/éu] +(f7)- (D.18)
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Appendix E

Derivation of the generalized

contracted Bianchi identity

Here we derive the generalized contracted Bianchi identity (4.3) from the connection
equations (2.55), and from the symmetry (2.8) of fl‘i‘u. Whereas [45] derived the
identity by performing an infinitesimal coordinate transformation on an invariant
integral, we will instead use a direct method similar to [3], but generalized to include

charge currents. First we make the following definitions,

W™ = —gW™ =V=NNY = /=g (g7 + ), (E.1)

fro= VRN = v=gitvRing (E2)
RTVG{/J = Fql;/,L,Ct - Fla,u + qurga - Fgarg,u + 617/— g[a,,u]? (E?))
RVH = Ral’aﬂ = Fs,u,oz - Fs{a,u + Fgurga - Flcjrarg,u + Fg[u,u}' (E4>
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Here 7~€,,# is our non-symmetric Ricci tensor (2.11), which has the property from

(2.16),
Ruu(TT) = R (E.5)

The tensors 72,,# and 7€Tl,a” reduce to the ordinary Ricci and Riemann tensors for
symmetric fields where I'?, =R, , /2=0.

Rewriting the connection equations (2.55) in terms of the definitions above gives,

. . . 4 . .
0 = W, +I7, WP+ 1% W7 —T7, W7 — (n—i)(jﬂ(s; —§76%).  (E.6)

Differentiating (E.6), antisymmetrizing, and substituting (E.6) for W™ , gives,

0 = (W fn+ D W + Tf W™ — T, W™ — (3767, — 370, )),V] (E.7)

n—)

T o a TO o T 4mr N T T
= Lo W+ Ty W = Top W = =5 7005 = 37 0%)
LW+ F[M W™, =L, W™ (E.8)
_ 1—‘7' 'WO' F WTO' "o WTP 4:7T
= oW e W T Lo W T T 1)(J wO% — 3 0%

p
~T,

5
7, (Pg, W 1 we — e wer T (ogn o)
oA alv] y]a (n 1) .] J

( a‘ ]WOCO' _‘_I‘O'} WTOC I"‘S]aWTU _ (n_l)

+ng (~g|V}W°“’ + f';]awm - V]QW“’

Cancelling the terms 2B-3A, 2C-4A; 3C-4B and using (E.3) gives,

1 opPT TO T Am Ny
5 [W PR gur + WTORP ;A (T )} + m {Fw F[AV]J }

4m o T o Two T A P %o Two p\ST
+(n_1) [(J 7[V+FO'[V-] _FJ[V.] )5§] - (.]p,[y‘{’r[ilo_‘] —FJ[VJp)(S)\]} . (ElO)
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Multiplying by 2, contracting over 2, and using (E.5) and jj;:() from (2.49) gives,

oV T TOPV I 8 T v 2T
0 = WPR 0+ WR,,,\(IT7) + m [F[VA]J — Iy }

8m ST T S0 Two ST\ SV v v o 10 SU\ST
+m [( W opd” =TgudT)oN — (7 p+ 16l —1on )%] (E.11)
B, B, dm(n—2 ST T fo 1o ST
— WUVRTGV)\+WTUR>\G _ ﬁ(.] ’>\—|—FO/\J —FU)“] ) (Elz)

This is a generalization of the symmetry R™y = R," of the ordinary Ricci tensor.
Next we will use the generalized uncontracted Bianchi identity[3], which can be

verified by direct computation,
V. — O- E- ].3
+0>\ et ( )

The +/— notation is from [3] and indicates that covariant derivative is being done
with fgu instead of the usual I'j,. A plus by an index means that the associated
derivative index is to be placed on the right side of the connection, and a minus
means that it is to be placed on the left side. Note that the identity (E.13) is true for
either the ordinary Riemann tensor or for our definition (E.3). This is because the
two tensors differ by the term 5ng[a7 . o that the expression (E.13) would differ by

the term 5g(f‘§[z,$];,\ + f‘g[i,i];y + f‘z[g,g];a)- But this difference vanishes because for

an arbitrary curl Y|, 5y we have

Yl/a' +Yo< I/+Y viiae — Yua _nyYO’OL _PZ YI/U
wald T Yia ke + Y0 valr = TS, Yioa) = LAYl
+ Y[a)\],l/ - fgy}/[U,A] - f‘iyif[a,a]

+ }/[/\7”706 - ng}qU,V] - f\gyxf[&a] - O (E14>

A simple form of the generalized contracted Bianchi identity results if we contract
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(E.13) over W7

v 2
+ 47'((71—2) At ~+ ~
TO > — T r o_T19° 3T .
+(W Rae = o) (7 A +T5,37 =15, ))
4T 4 A - 4T . -
_ VET 308V RO’ VHT o8V Tm/
(n_l)(J , —i70,) A+—(n_1)(J 7 =370 R 5un

~ - ~ + -~
“WT Ry + (W7 Rop)o + (W R ),

47T(TL—2) /'\—7": ~—7~'— o To /'\—7":
—W(J AT =175, )i

dr(n—2),, =~ 47
T TR,
e Y T e

‘vpo
J R oVA

= _WUV(’]%’O‘I/,)\ - f‘g)\’]’éau - f‘il/’]’é’UO{)

+(WoRp0)w + T WP Ry — TS WP R, — T2, W' R,

+(W"Ryo) + T, W Ry, —TH W R,, — T W R,

At(n—2) .
(n—1)

[JT7A,T+I~“;A7T3"+I~“;A5?—ng,TjT—fg,\j,TT
+ 00 (G A+ T ~T2J%)
~ D (et 107 = 10.57)
— fgf(jT,A+f;Ajg—ngjT)

- ja(,]éo')\ - fg[a,k]) - ja(f‘ga,/\_f‘g)\,a)]

~ +_
and 7, then substitute (E.12) for W"R7,,, and (E.6) for W7" .

(E.15)

(E.16)

(E.17)

(E.18)

(E.19)

(E.20)

With the j° terms of (E.20), 4C-6A,4D-8D,5A-7A 5B-7B,5C-7C all cancel, 4A and
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4E are zero because j”y =0 from (2.49), and 4B,6B,6C,8C cancel the Ricci tensor term
8A,8B. With the W7 terms of (E.20), all those with a f‘fu factor cancel, which are

the terms 1C-2C,1B-3C,2B-2D,3B-3D. Doing the cancellations and using (E.1) we get
0 = (. /_NN#I/CWI?/UA + /_NN%W@)\U)’V i /_NN"Z/O’/]%O-V’A' (E21)

Equation (E.21) is a simple generalization of the ordinary contracted Bianchi identity
2(v/=gR">\)»—+/—99"Rs,x = 0, and it applies even when j7 # 0. Because f‘ﬁu
has cancelled out of (E.21), the Christoffel connection I'}, would also cancel, so a
manifestly tensor relation can be obtained by replacing the ordinary derivatives with

covariant derivatives done with I'J ,
0 = ( \% _NN%MT?%U/\ + v _NNAUVQ)\U);V - V_NNAVUIIQ/O—V;)\- (E22)

Rewriting the identity in terms of ¢g?” and pr as defined by (E.1,E.2) gives,

0 = (\/__9 (QUV“‘fW)’]éo/\“' \/__g (gw‘i’fmr)ﬁ)\a);v_\/__g (QUV“‘fW)ﬁUV;)\ (E.23)
= V=g[2R"y), — ﬁg;x] +v=y [Q(fwfz[xa]);u+fw7~2[au];x] (E.24)

= V=92R"y. — RI + V=9 B Rigun+ 27 s Riro- (E.25)

Dividing by 2,/—g gives another form of the generalized contracted Bianchi identity
> (v 1 vpo 3AV0'~ Fvo
R A) §5>\RU v = éf 'R[w,’)\] +f ;V'R[U)\]. (E.26)

From (E.2,2.40) we get the final result (4.3).
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Appendix F

Validation of the EIH method to

post-Coulombian order

Here we state the post-Coulombian equations of motion of Einstein-Maxwell theory
obtained by two authors|[72, 74] using the EIH method, and show that they match
the equations of motion obtained from the Darwin Lagrangian[53]. For two particles

the Darwin Lagrangian takes the form

mavz 1 mav;1 ep €s €p

La: a > a0
2 8 2 “Ru | 20 Ra

Here we are using the notation

Tpy Ugp = Vg™ Up, nab_rab/Raba Rab_Tabrab‘ (FQ)

Ta= Vs Tp=Uh Tap=Tq
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From this we get the equations of motion

oL, O (0L,
N A L (-3)
Ta Ua
' €46 7 3t i i
ab a®b ab s, s ab . s .s
= eer 3 T (— VoV — virs vtr? —2vrs, + vr
2 3 “a“b 5 Ya’'ab™b ab b' ab
R, 2c R, R, R R
.My, €aCh : b s
-0 i,.88 a -7 i “ab’ ab
—Ma 0t — 2 (Vhv? + 20 050) — Uy — vy~
e 9¢ a%av 2¢2 R, R?%,
€aCh i .88 i 5.8 i .8 .S u, U UZbrab
YR (Uabvbrab + Ty URTy TR VUL, — BT U T~ R (F.4)
c ab ab
2 27 i
€qe v il r
b atb a s,.8 b ab
= —mi, + e epra lab | [———vv —l——}
3 2 ab 3
R, c 2 R,
s U pS pal 2.2 i
€aC [_,Usv'i 4 ’Uqu Tab o Seaebvuvs Tab"ab"ab €ab Tab (F 5)
c? a”a T Tatbl p3 2c2 0t RS mpc? R* '
ab ab b ab
Let us first compare the notation used in the various references,
Landau/Lifshitz v vt rl, Ruy e, e ma my
Wallace n B T e e My My
Gorbatenko {Z n -R, R Q@ q M m (F.6)
Bazanski & nt =R, r  ep es mp mo ’
Anderson .7:24 :L”B -7323 TAB Qa4 g Ma Mp
Jackson riory iy, R g2 mi mae

The Wallace[72] equations of motion (including radiation reaction term) are

sm 0 1 _ 1 157 ‘sés 9 1
maij 6162877’" o M €162 27777 n o\ r

28 M 8 m ~s ~m d 1 1 83 T rS
+ (0" =" + (¢ )3775(;) 39 nnCC

_Agl 9 (1N 2w
o 7aanm<r>+3€1(€177 +ea (™). (F.7)
Using
g (1\ B Or 1 o*r _ BrBs
L R A (%)
837" . Bs Br 357“655771 Bm
e e (F.9)
L& o B 3CEBBSm | B
20 nncc i 2rd T (¥-10)
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we get

1M m 1 $,.8 s m
ma7) —€1€2€—3 = e1e {— (27777 +77§>B

- S /M m /B 1 83 TS

S e iy S|

2 21 . 2
+%;%+361(61U +ea ™) (F.11)

= ee [— (2778778+778é8 <2< ) é_?

.5 . .5 - s 3.7“'8 r~sHzm
_ (nsnm_nsgm)f_g_ ccz/ifﬂ ]

e2es B, 2
+EF+361(6177 +€2C )- (F.12)

2 2
r v v
ab a s,.8 b ab
mgv €aCh Tz €y |— | = T V0 — = 3
Rab 2 Rab
_ (Usvm . vsvm) Tab . 31);1);7“2{)7"2{)7"2%
aa a’b 3 5
Rab 2Rab
2.2 ,.m
ese; r 2
a~b "ab m m
e + gea(eava + epty"). (F.13)
b ab

The Gorbatenko[74] equations of motion (including radiation reaction term) are

(6&)
2R3

(Ri&) ;

(Ri&) . ¢+

7 TR

qQ

M«Sk _ R +q0 (fﬂ?l)

Rk - Rk

_ﬁ_k _ (Buij) 3 (Rym)® () 2,
5~ o Tk T3 s 1k T ops L | T3(@8 +qik)Q. (F.14)

The Coulombian order equations for the n* particle are the first two terms but with

=P M —-m,Q—q, qg— Q, Ry = —Ry;. Using these equations we have

L qQ . qQ Riij) qQ Ry,
ik (Ri) o qQRy (F.16)

oR 2R3 *T Rt
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Substituting this last equation into (F.14) and assuming 1/(mR) is O(A\!) gives

R 3(Rir 2 .o 9
_fRf - 5( Jlgnsl) fy = (ggé)Rk] +3(Q& +qii)Q. (F.17)

Translating this into the Landau/Lifshifz notation we see that it agrees with (F.5),

1,0 o, [ 2
epe () U U v
ko bCa [ ab k ab%a k ab%a k a k
mev, = N Top T €b€q T Top T 3 vy — I v, — SR Top
ab ab ab ab ab

k A 2
el 3 (TapVy)” k Uy & iy -k
+ mbRﬁb D) Rib Tap T 2R2brab + g( aVq + ebvb>€a- (F-18)

\)
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Appendix G

Application of point-particle

post-Newtonian methods

Here we apply point-particle post-Newtonian methods to LRES theory in order to
calculate what the theory predicts for the Kreuzer experiment[86]. The Kreuzer
experiment is an experiment which can distinguish between active gravitational mass
and inertial mass. Active gravitational mass is the mass which is the source of the
Newtonian gravitational potential m/r. Inertial mass is the mass which relates the
acceleration of a body to an applied force. In particular inertial mass is the mass in
the Lorentz force equation mu"u,,, = —Q(A,,—A, ,)u”, which is exactly the same
in our theory (4.10,4.11) as in Einstein-Maxwell theory.

In [86] the computations only require the lowest-order post-Newtonian version of

the Lorentz force equation,

mpdv; B . ‘
g mpU; + QpE; (G.1)
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where

E,; = AO’,‘.

(G.2)

(G.3)

In [86] the computations also only require the lowest-order post-Newtonian approxi-

mation of the electromagnetic field,
Jio=Ei=-V, fiy =0,

where

Q

-yl
Tp
p

Here we will be using the notation

x = (position of observer), x, = (position of particle p)

r, = X=X, Tp=(Tpl, Tpg =Xp,—Xg  Tpg = [Tpgl.

From our electric monopole solution (3.1,3.2,3.8) we have

o Q 20°\? _Q Q>
fOl o T_2<1_Ab7”4) NT_2(1+A1)T4)’

2
F01 9<1+4m—4Q>

r2 A3 Aprd

Q

(G.6)

(G.7)

(G.8)

(G.9)

The extra terms in (G.8,G.9) fall off as 1/r5 or 1/r® and they all include a factor of

1/Ay and are < 107% of the /72 term for worst-case radii accessible to measurement.

Based upon this result and the close approximation of equations (2.47,2.48) to the

ordinary Maxwell equations, we will also assume the approximation (G.4). Therefore
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we have fi,5.4 =0, f,;” =0, and the 00 component of our effective electromagnetic

energy momentum tensor (2.68,2.67) is
nEM v 1 pv
87TT’OO ~2 fO fVO - ZgOOf lep
1
+ (2f7—(0f0)a;7;o¢ + 2fanT(0;0);0¢ - fVO;afao;u+ fVO;afVO;a + Efya;()fau;()

1 12 (0% 3 14 « —
- goofT’Bfﬁa;T;a - Z(fp Jop), %0900 — Zgoof[uﬁ;a}f[ 5; ])Ab ! (G.10)

Q

. 1 ..
2 (fifa = 310
. . . 1 .. B
+ (2fozfz‘(0;0);0—fko;iflo;k+fk0;afko;a+f0z‘;ofzo;0 — §(f01fi0),a;a> AL (G11)
Time derivatives result in higher order post-Newtonian terms, raising and lowering
with 7, differs from g,, only by higher order post-Newtonian terms, and covariant

derivative differs from ordinary derivative only by higher order post-Newtonian terms.

Therefore we have

3 1 1
STTEM ~ 2 (E2 — §E2) + (§(E2),k7k — By Bt EkEk) Ay (G2)

From (G.4), the last two terms cancel and we have

_ 1 1
8nTEM ~ 24 2—AbV2(E2) = |V + Q—Abvﬂwﬁ‘. (G.13)

Using V*) = —4m 3 Q,d(r,) from (G.5) we get the identity

1

1
3V =gV V) = V0V = [Vl —an D Q000 (G4
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Then we have

STTEM = ;v2¢2+4 ZQP (r,) ch vﬂvw (G.15)
1
= 2v2¢2+4 ZZQP vﬂwy? (G.16)
_ 1 2.2 1 2 2
= SVt dr ZQP (r, ; Abv |V (G.17)
= v2<1¢2 ZQ”ZQ‘?)+LV2|W|2. (G.18)
2 "p q#p 24

Using V2U* = —4n 3 m, d(r,) from (G.2) and including the mass part of Too we get

8Ty = 47erp r,) +V2< P2 — ZQPZQ(Z>+2LAI)V2|V¢|2 (G.19)

P q#p
7277 2 Qp Qq 2 2
= —VU*+V < P2 — zp: ; )+2Abv V. (G.20)

From [86], Goo = V2gpo/2 to lowest post-Newtonian order, so the Einstein equations

are

_1 2 T2 2 12_ % % L 2 2
Goo = 5 Vg0 = =V?U" +V <2¢ ZTPZT T V2. (G.21)

p a#p P4

This has the solution

goo = 1 — 2U* + % — 22 9 Z 9 y Aib\w\?. (G.22)

T
Pog#p P4

Using (G.2,G.5) we get
2 12

1 r

o = 12T () oGyt S, L

—~ T —~ T Tp Tpg  Np —~ T

The only difference between this expression and that of ordinary Einstein-Maxwell

. (G.23)

theory is the last term, and this term falls off as 1/r%. Since the difference between
gravitational mass and inertial mass in [86] depends only on terms which fall off as

1/r, these two masses are the same for our theory as for Einstein-Maxwell theory.
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Appendix H

Alternative derivation of the

Lorentz force equation

Here we check the results in §4.1 by deriving the Lorentz force equation (4.10) in a
different way, using the field equations (2.28) and a simple form of the generalized

contracted Bianchi identity (4.1). Let us make the definitions
WVO':\/__NN—ij:\/__g(gVO’_i_fVU)’ f\VM:fVM\/?Z.Agl/27 j'V:jl/ QZA;1/2 (Hl)
The generalized contracted Bianchi identity (4.1) then becomes

0 = (WVU 72,,)\ + W 7%)\1,);0 - WY? 7%,/0;)\ (HZ)

= (W7 R+ WPRy) o — W R (H.3)
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From (2.56,2.22,2.4) we have

V-NN*",N.,, = V=N(N*",+T? N +T7 N*)N_, (H.4)

= V=N(N"" ,N,,+2I'? )= —-2(V=N), +2V=NT?, (H.5)

= —2(vEN),. (H.6)
V3N = V3N = (VNN N,, (H.7)
= V=-NN"", N, +n(V=N), (H.8)
= (-2)(V-N),. (H.9)

Making linear combinations of the field equations (2.28) gives,

0 = VNN <7~2,,>\+ 24, V2> + ANy + Aegor— 87TS,,)\>
+ V=-NN™° <7~3,\V+ 2A[/\,y}\/§i/\1b/2‘|‘ AN+ Acgrn — 87TS>W>
— VENN (Ryat 241, V2i0,+ 8N+ Mg — 87500 ) o5 (HL.10)
= WY Rpn+ W7 Ry, — WORL — 16my/—g TY

— A/ =927 Apn+ [V Apa03) + AeV=N (2—n)05 + Ae/—g (2—n)d5. (H.11)
Using (H.2,H.9) the divergence of this equation gives the Lorentz force equation,

0 = V=9 \Rua—16mv/=g 5, —v=9gAsf " ANpryi
— 4= (=81 A+ 2 Ao+ [ A A+ [ Apagy)  (H12)
— V=G P ARppa)+ 24,0 V2ily + A Niyg)— 167/ =g T,
— 49 (=87 Ay + 3 Apan) (H.13)

= —16mv/—g (T, + 25" Ap) - (H.14)
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Contracting H.11 and dividing by (2—n) gives

0 = WR,,—

1
— T‘T
Ty
+ 4\/ —g fal/A[z/,a] + Ab V_N n—+ Ae\/ —gn. <H15>

Adding this to H.11 gives

~ ~ 1
0 = WY RV)\ + W R)\V— ].677'\/ —g <T)C\T - mT;—(SK)

— 8V=g [T AN+ 20 V=N 65+ 2A/—g O5. (H.16)

Taking the non-covariant divergence of this also gives the Lorentz force equation,

0 = W»Rypr— 167 ((\/—_ng),g— iQ)(\/__ng),)\)

20 (VEN) A+ 20 (v =g)  (H.17)

—8\/_( A" Ay + 77 Ap e
W R, 167 (w——gT;) VTG AT+ (VTGS >

—8y/—yg (47T.jVA[/\,V} + %f Y7 (BApa0 — A[a,y],x))

+Ab\/__NN_|VUNJu,A+ Ae\/—_ggyagou,A (H.18)
= W% (ﬁay,)\—i_QA[U,V],)\ﬂiA]i)/Q‘i_ AyNoya+ NeGov,n)

—87 (—\/—_QQJV,A <Sau - %gal/sg) + (\/—_gS(‘j)A)

—16m\/—g T, —8v/—g4mj" Ap..) (H.19)
= W (Roy+241,)V2iA) >+ ANy + Ao

—87r< V=99 7S + \/_9 AJovSa +(\/_5”))

—16m/—g (TXs +27"Ap)) (H.20)

149



= W% (7%01/—’_214[0,1/]\/52'/\15/2_'_ AbNO'I/—"_ Aego'lx - 87TSO’I/> A
=87 (—v=9 5, — (V=9)155 + (vV=957) )
—167/—g (TXs +27"Ap)) (H.21)

= —16mv/—g (TR, +25"Ap)) - (H.22)

It is interesting to consider the antisymmetric part of (H.11),

F R = 4 0 A, (H.23)

Comparing this to the antisymmetric part of the normal field equations (2.28), we

see that it implies f”[;N|y,;=0. This identity can be proven as follows,

8\/—9 fu
—~_ PN, = (NPT NT)(N?, =N = (N =N (N°,—N,7) (H.24
a2l 1= ) )—( ) ) (H.24)

— _N—iyJNV)\ _N—|UVN)\V+N—|V>\NVU+N—D\VNUV (H25)

1v—N
= 5—[_N4V0Nyp<N4p>\+N4>\p) —NAUVNW(N%P)‘_FN*AP)
V=9
_'_N4VANVP(N4PU+N4JP> _i_N#)\VNpU(N#po_i_Nﬂrp)] <H26)
1v—N
5 [_N—luaNypN—!)\p _N—|0'VNpVN—1p)\
V)

+ NN, NP+ N"*N,, N¥#] = 0. (H.27)
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Appendix 1

Alternative derivation of the

O(Agl) field equations

Here we check the results in §2.2-§2.3 by deriving the approximate FEinstein and
Maxwell equations in different way, using an O(A;') approximation to the Lagrangian
density. Inserting the order O(A,') result V=N ~ /=g (1 + f*f,,/Ay(n—2)) from

(C.12) into the Lagrangian density (2.10) and using (2.3) gives,

Lo~ _16_7r Nﬂw( au+2A[a,M]\/§iAy2)

1 1 1

N NA 1 e — 2)A I.1
=20 (1 = P )~ 1= DA+ L (L)
1 ~

~ _E _NNWU(RUM+2A[0,u]\/§iA1b/2)+(n_2)AV_9
1
ﬂl&r FFop 4 Lom. (1.2)

The fff,, term looks superficially like the ordinary electromagnetic term, except
that f,, is defined by (2.22) rather than as 24y, ), and there is also a sign difference.

The dependence of (1.2) on A, and I'?, is identical to (2.10), so Ampere’s law and

op
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the connection equations will be the same as usual. To take the variational derivative

of (I.2) with respect to v/—N N7 it is convenient to rewrite it as,

L= __[” NN™ (R au+2A[o,m\/§iA1b/2)+(n—2)AV_g]

167
VIV =t L (1.3)
Using
09ro/V=9) _ 9w (because (V=99 970/ V=9) :o> (1.4)
OV-NNW) ~ gvg (V=N N) o

and (2.26,2.22) we have

6r— 0L
d(v/—=NNno)
= 7%0# + 214[07“}\/51'/\2/2 + Ag(m

\/_(5[P5V]\/__gfaT+\/__gfpu6[a67) Gva Ypr

g/ —afrv ar [ _Iv@Iwa __Jpr Gva  Gp(cGu)r
V9V eV <\/_g¢—_g\/—_g+\/—_g\/—_g\/—_g)

1 pv [ aT Yva ng
o) )\/_ 9f”v/=gf NerNe
oL

—1GWW”M (16)

= Rop+ 241 V2iN)* + Agoy + Moo

1 1
—2 <foyf1/,u - gaumfpy l/p) — 87 (Tg“— mga“TS) . (17)

Symmetrizing (1.7) and combining it with its contraction gives the approximate Ein-

stein equations (2.43). Antisymmetrizing (1.7) and doing the same analysis as before

gives (2.78) and Maxwell equations (2.47,2.48).
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Appendix J

A weak field Lagrangian density

Here we derive an O(A; ') Lagrangian density for this theory which depends only on
the fields g,,, A, and 6,. The Lagrangian density is valid in the sense that it gives
the same field equations to O(Ab_l) as calculated in §2.2-§2.4. However, the weak
field Lagrangian density is derived with a somewhat ad-hoc procedure, and since it
does not describe LRES theory exactly, and exact solutions would be different, one
should exercise caution when using it to make definite conclusions about the theory.

Inserting the O(A; ) result (C.12) into our Palatini Lagrangian density and using
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the O(A; ) results (2.32,2.3,2.67,2.78,2.76) gives,

Ly ~ —ﬁ(\/—_gg‘”‘ + V=gV (Roy + 2410,0V210,)
i DG (L ) - DA (D
~ _%\/_—g(fz“(n—z)A—2f"“fW)—\/—_gﬁfp”fyp (J:2)
© YL (R4 (- DA
° fTBfﬁ o mg,a;a - QiAbf[uB;a]f[VB;a]
- <n_f’f{;$> - %fy) (1.3
~ —%(RJr(n—Q)A—f"“fW
Ul o no . 4
_ A_bf <C,87'apf ﬂ+87rj[5ﬂ> _ m 0%+ A—beﬂep
2
N (n—f)Q(Zg)Abjpjp (n 2 Ab ]T“) (3.4)
~ _% (R+ (=)A= "Fr = 5o fz)A,, 0+ f 0°0,
B (n—f)Q(ffz)A 7t ?W e > 15)
~ \1/6: (R—l—(n A f7F,, — ﬁea,ﬁ /i‘ 000,
- (n_ff(fo) et —fzf”;)iz ((F*7de)a = 4@%)) (1.6)
~ \1/; (R + (n—=2)A— f'F,, — %iﬂjp + Aibepgp
where we write (2.78) as
fou = Fout g f orows (1.8)
Top = 2Ap0 + AibQ[r,a]Ewm + %J[om (7.9)
Copop = Ropop — olaRoln + GuaRylo- (J.10)
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Removing the total divergences gives

V=g 4 27r(n 2)
= n—2)A— foHF —0°0 V- A1
Now let us redefine the electromagnetic potential
v 47t (n—2)
A=A, — 12
i n Ay(n— 1)Ju (J.12)

In terms of this shifted potential, f,, and £, from (2.78) lose their ji, ) terms and
Maxwell’s equations (2.47,2.48) become more exact. This redefinition brings the same

7%7, term out of L, for all of the L£,, cases. For the classical hydrodynamics case

(L.1),
L, = —%UUAU— %uagwu”, (J.13)
Jj* = m‘\ll/ci_gua, (J.14)
AL — _\/_—4”(”—_2) o (J.15)
m. T gAb(n—l)j .70" .
For the spin-0 case (L.2),
n? _
tn = Va3 (0D~ miv) (1,16
<_
o
D, = 8;1:“ + ZgAM D= - %Au, (J.17)
h
= D2y — D), (J.18)
172 2m 4 2 4mr(n—2
ALy = V=45 (—@) th%ma = —H%y‘%. (1.19)
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For the spin-1/2 case (L.4),

i - _ ,

_ 9 5 L@ 9 L pi_iQ
Dy = so+Tu+ 7oA, D, A+ - 224, (J.21)
J* = QU (J.22)

AL, = \/_glh¢70¢< Q) Ab<n— = W:i;jajm (J.23)

Here Ip=+/hG/c? is the Planck length. The AL, contribution is halved by the j7j,
term in the original Lagrangian density so that the total shifted Lagrangian density

is

by = L (R ) O
+Z"hydrodynamics + /jspin—O + /jspm—uz e (J.24)
where fo* and £, are (J.8,J.9) but without the j, terms,
fou = Foput fa ap, (J.25)
F, = 24+ Al Oprc)Eon™™ (J.26)

Expanding things out and ignoring higher order powers of Cj,q,/Ay and total

divergences, our effective weak-field Lagrangian density becomes

Ly = \1/6_?(]% + (n—2)A) (gra\:eti‘rcj;)nal)
4 ﬁ Al 7] A[o‘,u} B \/_—giwg;z:fg i, <electrt(;rrnrz§netlc)
LA s (o)

T (o e L L I Gty
+/thydrodynamics + Zspin—() + ﬁvspmq/Q ce (J.27)
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Even though we call this a weak-field Lagrangian density, it only neglects terms
which are < 10754 of the leading order terms for worst-case field strengths. We can
probably assume 6, ~ 0 because Proca plane waves would have a minimum frequency
Whroca = V2N ~ ﬂw?lp ~ \/i/ [p which exceeds the zero-point cut-off frequency
we ~ 1/lp. Alternatively this field could function as a built-in Pauli-Villars field as
discussed in Appendix K.

Finally, note that if we take the variational derivative of our shifted Lagrangian

density (J.27) with respect to ¢ we get the unshifted Dirac equation,

- ()
212 (n—2)Q

— G(n——l)ﬁwp‘jp + ihy” Db — mer (J.29)

= hy’ D) — me. (J.30)

Presumably the same thing occurs with the Klein-Gordon equation. This should be
expected because our shift in the electromagnetic potential is only a redefinition and
should not result in different field equations.

Now let us derive the field equations from the weak field Lagrangian density for
the source-free case. The O(A,') Maxwell equations (2.47,2.48) can be derived by

setting 0L2/0A, =0. Using (J.10,J.9,J.11) and

for = florery, (J.31)
{oapau = Yalo9ulp — C/’apau/Ab (‘]32)
5(fUHF;w> = 2fUM5F;w + faufap(;fauapa (J?’S)
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gives

0A[
0 = —Sngrt = v = (V) L = 2 030

From this and (2.21) we get Maxwell’s equations (2.47,2.48) as before.
The O(A}') Proca equation (2.81) can be derived by setting §£5/66, =0. Using

(1.33,J.32,J.10,J.9,].8,J.11) gives

0L,
550,

= —AQ\/ f”“ T /—g4N0” (J.36)
(g;w 70, ) v
= N | vV —gfwT’ w T V—g4M0 (J.37)

= Ab(\/ _gfauguauw)’w + vV —9g 4Ab¢91j (J38)

0 = —87A

(1.35)

= 20/ =g( Ao ) (V=g (407 + [77C 7)) ot v/—g 400" (1.39)
= 4(\/—96[1’;“’])w —v—g g”‘*"’“(ff”ém[w),w] +/—g4A,0". (J.40)

From this we get the Proca equation (2.81) as before.
The O(A}') Einstein equations (2.42) can be derived by setting 0Ls/8gs, = 0

First we will deal with the C),q, term in (J.33,J.32). From (J.10,2.76) we have

f)\pfal/(gé)\pa,, = prfau(S(RApa,, — ALty + gp[aRy])\) (J.41)
= prfaué(RTpay 267’ ) f)\Pfal/(sg (RTpaV _ 25;Ryp) (J42)

= [P (R por =200 Ryp) + 20000 2 F7 e (J.43)

To calculate f-? f*§(R" po—207 R,,) we will assume locally geodesic coordinates where
IV, = 0. With this method, terms with a I/ factor can be ignored, and covariant
derivatives are equivalent to ordinary derivatives, as long as they are not inside a
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derivative. Then from the definition of the Ricci tensor we have

prfaV(S(RTpow _25;RVP) = 2f7'pfay5rp[1/ o] + 4€p1/5ru[p o] (J44)
= 2f P fVSTT, |+ 2™GTS, | — 27T, (7.45)

= 2prfa”(5F;l,);a + 26””(5F§‘p);a —207(0I,)., (J.46)
= 2(frpfw5r;y);a + 2( epyérgp);a - 2( fpyérga);p

—2(f fO),a0LT, — 207 (TS 4207 TS

va?

(1.47)

where

=t f (J.48)

The first line of (J.47) is the divergence of a vector, so assuming that 6I';, =0 on the
boundary of integration, these terms can be dropped. Substituting the Christoffel

connection (2.20) into the remaining terms gives

P FOUO (R pos =200 o) = =(f" F):09™" (0gus0 + 095p0 — 0G5)
— 009" (89p8. + 09pv.p — 0Gup5)
+ E””;pgo‘ﬁ(égag,,, + 09810 — OGvap) (J.49)
~(f 120908 — (209080 — 09up.8) + 7 9" 0gas (J.50)
= —(f7F)a28908):p — €77 (2(09p5)w — (89up):5) + €7 19" (8gap)w (J.51)
= =2((f7 F*):a09u8);p — 2007 P8g,8 )0 + (£ P0gup)5 + (£ 09770 gag)w
+ 2P £, 0 p0Gus + 207 P8G5 — 07 P 500, — 07 g™ 0gas.  (J.52)
The first line of (J.52) is the divergence of a vector, so assuming that dg,, =0 on the

boundary of integration, these terms can be dropped. Using (J.52,J.43,J.33,J.32,J.9,
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2.79,2.76,J.11) and assuming a covariant 6,, the terms of 6£5/dg,, are then

50)\;)041/ o
0o

—1 Ap 1 uo p pap
av ao o op ra . gmj_,u.y euV.U_V
2Abf f 2Ab ((vf f )7 7P+(f f )7 ,P+ L] + L
_ gﬁw;ﬂ;ﬂ _ gpu;p;ugau + fapfau;p;a + fﬂpfoza;p;o‘)7 (J.53)

1 0F 0 1 1
— 2 ap - op nTY o oTU L oupap - '
2 ( f 59(7“) Ay (f Ep 97’71/ +f €p (97',1/ 29 f €par 97-71,) (J 54)

1 3 g 14 3 g UV 3 g oV
= A_b (_ﬁf pf[pu; ];l/_éfupf[p ; };V_{_Zg “fapf[p ; };V) (J‘55’)
2 6(6°6 2 1 /9
_A_b Esg p) _ A_beaeu:A_b (—g””f[yg;p}f[”ﬁ;“]—|—2g”“9p9p) (J.56)
op
1
- 1 (3mrrre. ><f”ﬁﬂ+fﬂ”f+fﬁ“k>+2gwepep) (157
1
— A_( fyﬁgf”ﬂ“—f— fl,g,af’g“”—i- f” BfVBu+ f” ﬂfWﬁ
1 1
+§foy;ﬁfgu;y - Z_lga,ufyﬁ;afl/ﬁ;a_éga,ufyﬁ;afal/;ﬂ> 3 (J58)
2 1 66— 1 3 U8 o
NS S V0 = 00, = S sl (059)
1 1 4 ap B 1 g P
2( =D ) — (.60)
1 ,
— 4 oﬂfap<pa fTVOTVpO() (J61)
Ay
1 el 4 1 op pap £
= f fpa f f [pa (J62)
1 av 0 (I o ”
§prf % = fore, (1.63)
op
1 6(v/=g((n=2)A+R))  (n—=2) . .
\/—_g 59(7“ = TAg —G . (J64)

Setting the sum of these terms to zero and applying Ampere’s law (2.47) yields the

order O(A;') Einstein equations (2.42).

160



Appendix K

Proca-waves as Pauli-Villars

ghosts?

Here we investigate the possibility that the 6, field in (2.81,J.27) could function
as a built-in Pauli-Villars field. Recall that in quantum electrodynamics, a cutoff
wavenumber is often not implemented by simply substituting k. for oo in the upper
limit of integrals. Instead, Pauli-Villars regularization is often used because it is
Lorentz invariant. With the Pauli-Villars method, a ficticious particle is introduced
into the Lagrangian which has a huge mass, M say, and which has the opposite
sign in the Lagrangian, meaning that it is a ghost, with negative norm or negative
energy. This has the same effect as a cutoff wavenumber where k. = M (in quantum
electrodynamics natural units). To calculate the electron self-energy for example,
this ficticious particle is a ghost Proca particle. When calculating the amplitude of

a process involving a photon, the integral associated with every Feynman graph will
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contain a Feynman propagator of the form

Gij
Dy;=—79 K.1
T (p—k)? +ie (K1)

Introducing the ghost Proca particle means that for every Feynman graph that one

had originally, there will be a new one where the associated integral contains instead

D;; = — o k)Qg_ijMQ e (note the minus sign). (K.2)

Because of the way that amplitudes are combined, this has the effect of replacing the

original photon propagator in all Feynman graphs with the sum of the two above

Gij Gij
D;: = — _ K.3
T (p—k)2+ie  (p—k)2— M?2+ie (K.3)

When one integrates over k, the two parts cancel each other for k >> M, effectively
cutting off the integral. However, because the additional term of the propagator has
the huge mass M in its denominator, this term has virtually no effect for ordinary
momenta that can be produced in accelerators and astrophysical phenomena.

The point of this is that the ghost Proca particle that seems to come out of
the theory is just what is needed for Pauli-Villars regularization. This can be seen
from the effective weak-field Lagrangian density for the theory in Appendix J. All
that would necessary to do would be to include a coupling of this particle with the
electron when spin-1/2 particles are added to the theory. So this ghost Proca particle
could actually be a blessing in disguise, because it potentially frees the theory from
divergences which must be removed artificially in ordinary quantum electrodynamics.
This also illustrates that a ghost particle with mass near the inverse Planck length is
a whole different animal than one with an ordinary mass.
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With further work, it might even be possible to free the theory of its reliance on
an externally imposed cutoff frequency. The Pauli-Villars cutoff caused by the ghost
Proca particle should also cutoff the calculation of A, (for photons anyway). Then

combing (2.12,2.81) we get

We = k?c =\ 2Ab, (K4)

Ay = Culiw!=C.3(20,)%, (K.5)
=N = ! (K.6)
TN ‘

where [p is the Planck length, w. is the cutoff frequency (2.13), and C, comes from
(2.14). But we have calculated in (7.15) what A, must be in the non-Abelian theory,
and presumably this should apply for the Abelian theory also. Equating the values

from (7.15) and (K.6) gives

1l __ o - = . (K.7)

A —
"TUCL2 T 8i%sin?d, a

Using a=e?/he=1/137.036, sin® §,, =.2397 £.0013 and the definition (2.14) gives

( fermion boson )_ Amsin®0.,

spin states  spin states o =412.8 £ 2. (K.8)

The result (K.8) is interesting, partly because the theory predicts that the difference
should be an integer, and this potentially allows the theory to be proven or disproven.
At present the weak mixing angle #,, cannot be measured accurately enough to deter-
mine whether we are seeing an integer or not. The issue is also complicated because
the value of sin?6,,/a “runs”, meaning that its value depends logarithmically on the
energy at which it is measured. To really do an accurate calculation we would need
to use its value at the same cutoff frequency w,. used to calculate A, but this could be
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done. It is likely that measurement accuracy will improve enough in the near future so
that we can determine whether (K.8) is consistent with an integer. The result (K.8)
is also interesting because it might select among the different possibilities of matrix
size for the non-Abelian version of our theory. For the non-Abelian theory we used
2x 2 matrices in order to get Einstein-Weinberg-Salam theory, but we had the choice
of using any matrix size “d”, corresponding to U(1)®SU(d) instead of U(1)®SU(2).
Each choice of “d” will result in different numbers of fermion and boson spin states.
It would be very nice if some choice of “d” agreed with (K.8). The choice d=5 with
U(1)®SU(5) is particularly interesting because SU(5) has long been considered as a
way of unifying the strong and weak forces in the U(1)®SU(2)®SU(3) gauge structure
of the Standard Model. However, the calculation of the left-hand side of (K.8) is
complicated, and it is unclear whether to include scalar particles and gravitons, and
it is even more unclear how to account for possible additional particles associated
with a non-Abelian g,,. For the Standard Model the left-hand side of (K.8) works
out to about 60.

To do this rigorously, we would also need to include Pauli-Villars ghosts corre-
sponding to electrons. Of course the theory only approximates electro-vac Einstein-
Maxwell theory, so we must add in spin-1/2 particles (one can think of this as 1st
quantization of an electric monopole solution). In any case, for every spin-1/2 par-
ticle that are added to the theory, it would be easy to also add in a corresponding
Pauli-Villars ghost. Surely having Pauli-Villars ghosts as an inherent part of quantum
electrodynamics can’t be any worse than introducing ficticious particles just to make

divergent integrals come out finite, and then forgetting about them.
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Appendix L

Lm, Ty, 7 and kinetic equations

for spin-0 and spin-1/2 sources

Here we display the matter Lagrangian L£,, for the classical hydrodynamics, spin-0
and spin-1/2 cases, and we derive the energy-momentum tensors and charge currents
for each. Then we derive the Klein-Gordon equation and Dirac equation, and we
derive the continuity equation and Lorentz force equation from the Klein-Gordon
equation. All of these results are shown to be identical to ordinary Einstein-Maxwell
theory and one-particle quantum mechanics.

For the classical hydrodynamics case we can form a rather artificial £,, which
depends on a mass scalar density g and a velocity vector u”, neither of which is

constrained (that is we will not require 6L£/dpu= 0 or 6L/0u’ = 0),

Lo = —HLypa, B e (L.1)
m 2
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For the spin-0 case as in [49], matter is represented with a scalar wave-function 1),

2
tn = Vi (B0 - mi), L2

) = )
b~ 09, 5 0 i,

oxt R -H T TH T Qgr T (L.3)

For the spin-1/2 case as in [49], matter is represented by a four-component wave-

function 1, and things are defined using tetrads e,

th , - - _
Lo = Vg (E(MUDW ~3D.7Y) —mww>, (L4)
) I 0 , 0 o
7 = A% . 0= , 9 = , (L5
0 —1 —0; 0
1
a a TO a a —1
g( ) = el e(b)gg — —(’7( )V(b) 4_7(1?)7( )) — , (L.6)
-1
-1
To T o (a)(b) _ 1 TO oT
97 = ewew’e T =507+, (L.7)
e(a)Te(c)T = (5((;1)) y €(a)7-6(a)a = (Sg, (L.S)
o . 0 0 . iQ
Dy = o +D0i+ 224, D, — + Tl -4, (L.9)
. 1 ?
Ly = 359w e, B0 = (0 —105@). (L.10)

In the equations above, m is mass, () is charge and the o; are the Pauli spin matrices.
In (L.3,L.9) the conjugate derivative operator ﬁu is made to operate from right to left
to simplify subsequent calculations. The spin-0 and spin-1/2 £,,’s are the ordinary
expressions for quantum fields in curved space[49].

To calculate T, for the spin-1/2 case we will need to first calculate the derivative

(V=g ew")/O(vV—NN¥). Multiplying (L.7) by v/—ge®, and taking its derivative
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with respect to \/—g g"” gives

Vg0, = g ew g, (L.11)
He® V=9¢@") (@

T z’ 0+ — ga . L].Q

b Vo9 )~ o) 12

Taking the derivative of (L.8) with respect to \/—g ¢"” and using (2.26) gives

a(\/__.9‘5(12)7-) 9v )
0=e, — 5+ V=g o L.13
e e e LR e pok (L19)
Substituting (L.13) into (L.12) we finally get
OV—9ew) v _ m 0c,
A0 _ O 5T = =g g L.14
V=T S VI ) (L
R TR () (b) OV—gew") (a) ) L
= e, —eW X L = 2l )(L.15
(5 aggm) o)
R A Ve I O
_ O _ g6 VI ) L.16
w-2° 7 o e (1.16)

0V—gew’) _IWV—gew) 1 9
- = —emw0y + N L.17
O(VNNw) — a(y=gg) 27T o0 2)" (L.17)

From (2.30) we see that S,, and T, are different for each L, case. For the classical

hydrodynamics case (L.1),

12 1
S,y = —— <ul,u - uaua) , L.18
H /_g K (TL . 2) I ( )
12
T,, = —uyu,. L.19
Iz \/_—g 2 ( )

For the spin-0 case (L.2) as in [49],

S = o (EDD - - i), (L.20)
Ty = — (DDt = San 0D, —nbw)) . (.21

For the spin-1/2 case (L.4) as in [49],
S = 5 (P60~ 5D = gD = 5Dw) ) (L2

N )
T = 5 ($16Du = 6Dyt (L.23)
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Note that in the purely classical limit as th D, v — p, | —ihzﬁga —1py, the energy-
momentum tensors (L.21) for spin-0 and (L.23) for spin-1/2 both go to the classical
hydrodynamics case (L.19).

From (2.46) we see that j7 is different for each L£,, case. For the classical hydro-

dynamics case (L.1),

oo ML e (L.24)

For the spin-0 case (L.2) as in [49],
j* = SEWD — 6 D) (L.25)
For the spin-1/2 case (L.4) as in [49],

J* = QU (L.26)

For the spin-0 case, the Klein-Gordon equation is obtained by setting §£ /8= 0,

. {% (—%AM) D — i — %(HDWA} (L28)
_ % {\/_h_z (%M > J=gD"b —m ] ¥ (L.29)
_ %{\/fi M\/_D“er] (L.30)

The conjugate Klein-Gordon equation is found by setting £/ = 0,

- A )
- %;E {ﬁ*‘\/_ﬁ j—_z_g + mﬂ : (L.32)
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This is just the complex conjugate of the Klein-Gordon equation (L.30) if ¢ = v*.

For the spin-1/2 case, the Dirac equation is found in a similar manner,
0 1 {0[, ( oL ) }
= —— a3 |z /x
V=9 [0 \0Y,
= W Dy — ma.
The conjugate Dirac equation is,

0 — L[%_(ﬂ) }
T V=g law \av, )

= —ihz/jgaya — ma.

(L.33)

(L.34)

(L.35)

(L.36)

Both the Klein-Gordon and Dirac equations match those of ordinary one-particle

quantum mechanics in curved space[49].

Note that for the spin-0 case, instead of deriving the continuity equation (2.49,L.25)

from the divergence of Ampere’s law, it can also be derived from the Klein-Gordon

equation. Using (1..30,1..32,1..3,1..25) we get,

0 — Q) 7 one side of [ one side of conjugate
- 2h Klein—Gordon equation Klein—Gordon equation

S N R NG R

2mh

- 225 (e o) o ()

2

) @z)} (L.37)

(L.38)

(L.39)

5 5
ZﬁQ 1 0 i 1 0
B ¢ ((81:“ /—g Oz > -D ( (93:“\/_ Ox “>>w<L'4O)

ihQ 1 3 <_ 1
= ( =% O VD) — (DG F)

I
- %a% (Vo@D e - 55
= 7w
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Similarly, instead of deriving the Lorentz-force equation (4.10,1.21) from the diver-
gence of the Einstein equations, it can also be derived from the Klein-Gordon equa-

tion. Using (L.30,1.32,1..3,1..21) we get,

0 — ( one side of conjugate >D_p¢ @ ( one side of )(L.44)

Klein—Gordon equation ) 2 * 2 Klein—Gordon equation

- w(%AHE ¢’5__g+ ) Q;;fﬁgz ( J_ng—Dum)w (L.45)
- o@D /=g 1 1 d(y/=gD*)
BT R i 1”(5 o0
D <——AA) D+ 9D, (fAA) Dw]
Z(BDp + 6 D) (L.46)
7SW—— 1 = 1 0(/=gD")
- % ox> \/—_Dpw—i_wgp V=g ox>

44D (—%Ak) + D (——AA> <%AP) "

B2 () ()

+2 (0284 20y) (L.47)
o mw—g 1 o1 A/=gD)
- 2m[ 0 \/—_gDpw—i_wgp\/—_g D

— D> (@Ak) % — D> <—FA,)) gﬁ LD (—%AP) DM
oy [ iQ N iQ) S A A
20 () o (K4,) 25005 (-4, V]

m A(4y))
+ CREY (L.48)
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oD =) 1 1 0\/_Dw>
RN ¢§ oz

(8 ($40)- 2 (00) 2200

AR T *
= (a (-7407) - s (-707) + nQA[f"W) 2]

m oY)

2m

4 ooy (L.49)
B[R i e
+ 00,2 D~ 55,2,y
N @A( D) _ <§§p¢))+<8(§§”) gﬁ ) Y
Q (DM — 5D A M] +%a(aL:$) (L.50)
_ %[\/L_%( e ¢$ADP¢+¢EDW)+¢§%€: p Dyw—%@@w%
& ) GRG0 A (L51)

= o [#@D D+ wﬁ)p V) — (B DADN — mp) |

+ R G — D) A (L.52)
= To\+ 27 Apy- (L.53)

Presumably, similar results occur for the spin-1/2 case, but this was not verified.
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Appendix M

Alternative ways to derive the

Einstein-Schrodinger theory

The original Einstein-Schrédinger theory can be derived from many different La-

grangian densities. In fact it results from any Lagrangian density of the form,

LN N,y = =i VN [NV (R (F)+ 1T+ 240, V2iAY?)

pT? 167

+(n—2)Ab s (Ml)

where ¢y, c9, c3 are arbitrary constants and

RVH(F) = fgu,a - fza,u + fgyfga - fgaf:uﬂ (M2>
o P 2 alio ao
FVN = FVN+ m cgéuf[(w}—i—(cz - 1) (SVF[O_M] R (M3)
A, = Tg,/c. (M.4)

Contracting (M.3) on the right and left gives

=0 ]_ ’\a Aa o
[Ga = 7 [(can+co = 1)Io5 — (con + 2 —n)I'G, | =T5g, (M.5)

(n—1)
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SO fﬁu has only n®— n independent components. Also, from (M.3,M.4) we have

Ta o 2 a a
re, = Ig,— (ni) [205A, + (2 — 1)og ALl (M.6)

SO f‘;"u and A, fully parameterize f‘jﬂ and can be treated as independent variables.
Therefore setting 0L/ 5fl‘f“: 0 and 0L/JA, = 0 must give the same field equations as
oL/ 5?% = 0. Because the field equations can be derived in this way, the constants
¢ and ¢z are clearly arbitrary, and because of (2.58) with j7 = 0, the constant ¢; is
also arbitrary.

For ¢; =1, ca=1/2, 03:—(n—1)\/§iA1b/2, (M.1) reduces to

LEAN,) = —L\/—_N[N*M”Rw(f)ﬂn—m/\b], (M.7)

pre 167
which is our original Lagrangian density (2.2) without the A, /—g and L,, terms,

where we have the invariance properties from (2.18,2.19),

A, ——A,, T8, T fﬁu—f‘”‘ Nyy—Ny,, N"WoNY = £L  (M8)

j 2 y1 7%

B e e me s 2R
Aa=r Aa= 0 T T ro —To + 22600 V2iN)* = L—L. (M)

pT Q
For this case we have I'® =T"%_ :fg‘m), and from (2.57,2.28,M.1) the field equations
require a generalization of the result £ ,—1"% £=0 that occurs with the Lagrangian

density of ordinary vacuum general relativity, that is
L,—T4nL=0 or L,—Re(l'y,)L=0. (M.10)

For the alternative choice, ¢; =0, ca =n/(n+1), c3 = —(n—l)ﬁiAlb/2/2, we have

Ie =T =T and from (2.57,2.28 M.1) the field equations require

L,—T¢ L=0. (M.11)
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For the alternative choice ¢; =1, c2=0, c3=—(n— 1)\/51'/\2/2, (M.1) reduces to

pT?

LI N, = —%\/_—N N, (T) + (n—2)A, | | (M.12)
T
where ?Rl,u(f) is a fairly simple generalization of the ordinary Ricci tensor

R,,[T) = T¢, -T2, .+ —T9 T (M.13)

via ~ Lwlanlw) T L oul oo = Lual oy

For the alternative choice ¢; =0, c2=0, c3= —(n—l)\/ﬁz’Alb/Q/Z, (M.1) reduces to

LTA N, = L\/—_N[N*WRW(f)Jr(n—Q)Ab , (M.14)

T 167

~

where R,,(I') is the ordinary Ricci tensor

R, () = T¢, -T2 +T9re —T71¢ (M.15)

Vi, Vo, vpt o var op’

The original Einstein-Schrodinger theory (including the cosmological constant)
can even be derived from purely affine versions of the Lagrangian densities described
above, such as the Lagrangian density £(I') = [—det(R,,M(f))]l/ 2 used by Schrodinger[6].

A better choice is the purely affine version of (M.7)
L) = —1/—det(N,,), (M.16)
where N,,, is simply defined to be
Ny = —Ryu(T)/ Ay, (M.17)

and the properties (M.8,M.9,M.10) are inherited. Decomposing ffj“ into f‘jﬂ and A,
as in (2.4,2.6,2.7), and using (2.9,2.11) it is simple to show that 6£/0A, = 0 and
55/5f3u = 0 give identical equations as in §2.3 and §2.4 except that £,, =0, j, =0,
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7,,=0, A,=0. In addition, the definition (M.17) matches the field equations (2.28),
so that this equation and all of the subsequent equations in §2.2 are identical except
that £,,, =0, j,=0, T,,, =0, A, =0. Therefore, the purely affine Lagrangian density
(M.16,M.17,2.5) gives the same theory as the Palatini Lagrangian density (2.2) with
L, =0, A, =0, which is the original Einstein-Schrédinger theory. The derivation
of the Einstein-Schrodinger theory in this manner is remarkable because the only
fundamental field assumed a prior: is the connection fgu. The fields Nop, Gop, fou,
A, and f‘f;u all just appear as convenient variables to work with when solving the
field equations.

It is important to note that the purely affine derivation only works for Schrédinger’s
generalization of Einstein’s theory which includes a bare cosmological constant, be-
cause if A, = 0, the definition (M.17) would not make sense. Also note that the only
reason we do not set Ay =1 is because we are assuming the convention that Ny, has
values close to 1. If we chose to we would be free to absorb A, into IN,,, because both
fg‘ﬂ(N,_) and R,,(I'(N.)) are independent of a constant multiplier on N,,. We would
also be free to absorb A into the definition of A,. Therefore, A, does not need to
be in either the field equations or the Lagrangian density. It is only there to make
the definitions of N,, and A, conform to conventions. The cosmological constant
term has often been referred to as an undesirable complication, attached to otherwise
elegant field equations to make them conform to reality. From the standpoint of the
derivation above, it is nothing of the sort. Instead, A, appears as the magnitude of

the fundamental tensor N,, when N, is put in more natural units. The cosmological

constant term is not an added-on appendage to this theory but is instead an inherent

175



part of it.

Let us consider whether the Lagrangian density (M.16,M.17,2.5) is unique in that
the resulting theory satisfies (M.10). While a rigorous proof is probably not pos-
sible, a strong argument will be presented below that the theory is unique in this
property. With no metric to use, the forms that a scalar density can take are lim-
ited. Also, because (M.10) exists for any dimension, we must only consider forms

which exist for any dimension. To discuss this topic, it is convenient to use the

fields T@

o Ay as defined by (2.7,2.4) instead of fg‘u. The simplest form to consider

is L = v=N, where N,, is a linear combination of the terms 7@0#, Ruo [

alol’
Alg i Ag,u—fguAa, re Ag, and A,A,. Many other terms can be decomposed into

[op]
these, such as Rw(fT) = 72“0+21~“g[uva], 7~2°‘M“ = Qf‘g[/w]’ and anything dependent
on fgu Our Lagrangian density (M.16) is a special case of this form. In fact, it
happens that (M.10) is satisfied for any £ = v/~ N where NUM:a’/éw—l-bA[a#H—cf‘g[%U]
and a#0,b0#0. This would initially seem to indicate that the Einstein-Schrodinger
theory is not unique, except for the surprising fact that the same field equations re-
sult regardless of the coefficients in the linear combination. The f“;[#’g] term causes
52(\/—_]\7 Nl | terms in the 55/6ffp =0 field equations (2.55), but these are re-
quired to vanish by the 0L£/0A, = 0 field equations (2.45). Also, (M.10) requires
that fg[u,o} = (InL) [u,0) =0 from (2.58), so this term is of no consequence. Different
field equations result if any other terms are included in N,,, but then (M.10) is no
longer satisfied. To argue the case for uniqueness, we must next consider more com-

plicated forms. The most obvious generalization of a single v/—/N consists of linear

combinations of such terms, v —!N and v/ —2N etcetera. The resulting field equa-
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tions contain different N7* terms, and there is just no way to contract the equations

to remove these terms as we did in (2.57). Linear combinations of terms such as

vV —INv/—2N /\/—3N have the same characteristic. Next one can include linear com-
binations of terms like v/—IN!N#2V, . In this case the field equations contain
terms with different powers of 'N77#. From trying a few of these, it seems very likely
that the simplicity of (M.10) demands simplicity in the Lagrangian density, and that
the only real prospect is a single v/~ N as we considered originally.

Whether one prefers the Lagrangian density (M.16,M.17,2.5) with the properties
(M.8-M.10) or one of the alternatives, it is clear that the original Einstein-Schrodinger
theory can be derived from rather simple principles. The theory proposed in this paper
just adds a A,,/—g term to the original Einstein-Schrédinger theory, and this could
be caused by zero-point fluctuations. One might perhaps regard a spin-1/2 L,, term
(L.4) as another quantization effect, that is as the “first quantization” of our charged
solution. In this case all of one-particle quantum electrodynamics results by including
quantization effects in the original Einstein-Schrodinger theory. Furthermore, if one
was to try to second quantize the theory, the most obvious approach would be to use
path integral methods with the action of the original Einstein-Schrodinger theory,
S = [Ldz".dz"™ with (M.16,M.17,2.5). Since both A, and a spin-1/2 £, term
can be interpreted as quantization effects, these terms might be expected to result as

iS/h amplitudes

quantization effects using a purely classical action, and adding up the e
for all “paths” of the field fij Now it is unclear whether such a quantization scheme

would work, or how practical it would be in terms of being able to do the calculations

and predict experimental results. However, it is at least theoretically possible.
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The search for simple principles has led to many advances in physics, and is
what led Einstein to general relativity and also to the Einstein-Schrodinger theory[87,
3]. Einstein disliked the term /—gF"#F), /167 in the Einstein-Maxwell Lagrangian
density. Referring to the equation G,, = 87T, he states[87] “The right side is a
formal condensation of all things whose comprehension in the sense of a field-theory
is still problematic. Not for a moment, of course, did I doubt that this formulation was
merely a makeshift in order to give the general principle of relativity a preliminary
closed expression. For it was essentially not anything more than a theory of the
gravitational field, which was somewhat artificially isolated from a total field of as
yet unknown structure.” In modern times the term /—gF"*F),, /167 has become
standard and is rarely questioned. The theory presented here suggests that this term
should be questioned, and offers an alternative which is based on simple principles

and which genuinely unifies gravitation and electromagnetism.
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Appendix N

Derivation of the electric monopole

solution

Here we derive the exact charged solution (3.1-3.4) discussed in §3.1. It can be
shown[46] that the assumption of spherical symmetry allows the fundamental tensor

to be written in the following form

vyoo—w 0 0
W —« 0 0
N, = (N.1)
0 0 —p r2vsin 0
0 0 —r’vsinf —pBsin%f

Both [46] and [47] assume this form with 3 = r?,v = 0 to derive a solution to the
original Einstein-Schrodinger field equations which looks similar to a charged mass,
but with some problems. Here we will derive a solution to the modified field equations
(2.31-2.8) which is much closer to the Reissner-Nordstrom solution[61, 62] of electro-

vac Einstein-Maxwell theory. We will follow a similar procedure to [46, 47] but will
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use coordinates xg, x1,To, x3 = ct,r, 0, ¢ instead of x1, 2o, 3,24 =7,0,0,ct. We also
use the variables a = 1/, b = ya, § = —w, which allow a simpler solution than the

variables «, v, w. This gives

1/ad  3/d 0 0
—5/d —ab/d 0 0
N = : (N.3)
0 0 —1/r2 0
0 0 0 —1/r%in%9

VEN = Vdrising, (N.4)
where

d=b— 5. (N.5)
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From (N.3,N.4) and the definitions (2.4,2.22) of g,, and f,, we get

1/ad 0 0 0 0 —5/d 0 0
1| 0 —ab/a o0 0 A2 |8/d 0 0 0
g = - ’ fvu:ﬁ , (N.6)
0 0 -1/2 0 “@'o o0 0o
0 0  0—1/r%in%*0 0 0 00
ad 0 0 0 0 500
0 —d/ab 0 0 A2 | =500 0
v = c ; fV/.L:\/—2—Z.é ) (N7)
0 0 —r? 0 0 000
0 0 0 —r?sin%0 0 000
V=g = Vbr¥sin 6, (N.8)
where
¢=1/b/d=+/—g//~N . (N.9)

Using prime (') to represent 0/0r, Ampere’s law (2.47) and (N.3,N.4) require that

0= (VENNTOI), — <57’27;9)/, (N.10)
From (N.10,N.5), this means that for some constant ) we have
st st Qv2i (N.11)
Vi Vim® AP
Solving this for 52 gives
2
5 = %Q#QAW : (N.12)

From (N.11,N.12) we can derive the useful relationship

oo Y 1wt st (8 Y
s 25 25\ 202— Apt 22— At \ 02 ) ) T

(% —27d> (N.13)

S| ¢
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The connection equations (2.55) are solved in [46, 47]. In terms of our variables, the

non-zero connections are

I~jtl)o - g(ab)' + 4a—2§2 ) I~1(1)0 = fgl = (;clz)l)), + % ) fh = _2_2,7

1?2 = fgl = f??) = fgl = %a (N.14)
I, =—ar , Iy = —arsin®0 | T3, =13, =cotf , '3 = —sinfcos¥,

ng - _fgo - fgzs - _fgo - e ’ fio - _f(ln = _¥7

e —0, T _%ﬁ%*%’ o — cotd, T2 =0. (N.15)

The Ricci tensor is also calculated in [46, 47]. From (N.15) we have '

a[’/vﬂ] = 0 as

expected from (2.58), and this means that 7%”” :RW. In terms of our variables, and

using our own sign convention, the non-zero components of the Ricci tensor are

- aba” V" 3adb  PVY o« 8a?ss
_ — _ o _ - b/ /b _
Roo 2 2 T Tyl rdh) - —
a?s® 3V 3d 10 832
— (=== N.16
r ( b a T + br ) ’ ( )
. a voovy  3db o 458 32 [3d 48 2
Ry = o = Y e A T
Ru 2a+2b 4b2+4ab+ar+b7’+b’r(a+br 7’>7< )
. 2 U 2452
—Ran = C;—T (FGJFE) +a—1+ al;s ; (N.18)
—7%33 = —7%22 sin29, <N19)
~ a3\’  6as
—Rpg = 2 - + ol {[46] has an error here} (N.20)

182



From (N.2,N.7,N.9,N.19), the symmetric part of the field equations (2.31) is

0 == Roo + AbNOO + AzQOO = Roo + Abab + A ab

0 = 7€11 + AN+ Agn = 7211 - Ab_ — A, a_c

0 = 7é22 + AyNog + AL goa = 7~322 — Apr® — AzéT2>

0 = Ras+ AyNag+ A.gss = (Rag + ApNag + AL goy) sin0.

(N.21)
(N.22)
(N.23)

(N.24)

Forming a linear combination of (N.22,N.21) and using (N.17,N.16,N.13,N.5), we find

that many of the terms cancel initially and we get,

~ 1 1 1 b
0 = b(—RH—f-Ab——I—AZ%) < ROO—A[)CLZ)—A CZ)

458 3% (45 2 b 8§§’ $2 /30 10 832
= +7 —_——— + — ———+

r br r r r br
43 Ts Y 2d 128 (3 1\ V¥ 352b’
- —7[5(5—7>]+ r (b——;)

d =2 /
= 72 (43 —I—Tb)

From (N.12) this requires

8bQ)?

A To

+1rb.

Solving (N.27) and using (N.12,N.5,N.9) gives identical results to [46, 47],

2Q*
b = 1-— -2
AbT‘47
. 2b()? \/§ZQ
S = ==
2@2_ Abr4 /_Ab 702’
d = b—3

§° =1,
L |, 27
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(N.26)

(N.27)

(N.28)

(N.29)
(N.30)

(N.31)



To find the variable “a”, the 22 component of the field equations will be used.

The solution is guessed to be that of [46, 47| plus an extra term —A,V/r,

oM Ay? A
g1 2 At AV (N.32)
T 3 r

Because “b” and “$” are the same as [46, 47], we just need to look at the extra terms

that result from A,. Using (N.23,N.18 N.32)N.26,N.31) gives,

2a' U 2a3
0 = —Rop+A?+Aer? = 2<Z+b)+a 1+T+Abr + A.er? (N.33)
v\ vy v o 2vs: . o
- _AZ[T<7) T T _Cr]__AZ[V_M}' 20

This same equation is also obtained if the 11 or 00 components of the field equations
are used. The solution for V(r) can be written in terms of an elliptic integral but we

will not need to calculate it. With (N.34) and the definition

Vo= 73; (v - ;) (N.35)

we get the following results which will be used shortly,

. VoA — 1 Q> (VY . Q*V

Next we consider the antisymmetric part of the field equations (2.32), where only the

10 component is non-vanishing. Using (N.20,N.2,N.29,N.32) gives

/\71/2 Aﬁl/2 as)’ 6as
FQl = \/_ (R[Ol] + AbN[Ol]) \/_Z |:2 (—) + —_— + Ab8:| (N37)

_ GaQ Q Q
B (Abr3> Ayr? Tz ( i Abr> (N-38)

Using (N.7,N.28,N.29,N.30,N.31,N.32,N.34,N.38,N.35,N.36) we can put the solution

in its final form (3.1-3.4).
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Appendix O

The function V(r) in the electric

monopole solution

The behavior of the charged solution of LRES theory near the origin hinges on the
behavior of the function V(r) from (3.6,3.5). The Reissner-Nordstrém solution has a
naked singularity for ¢) > M, and this is commonly cited as a reason that this solution
should not be associated with an elementary charge. Therefore it is important to
investigate the behavior of V/(r) near the origin, to understand how our solution

differs from the Reissner-Nordstrom solution.

Changing variables with t=1r/ry where ry = v/Q(2/A;)'/* from (3.16) gives

L2 3
V:é(‘/—%), vV = /\/7‘4—r§dr:r3/\/t4—1dt. (0.1)
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Integration by parts gives

/\/m(it = /\/—dt+ [t\/ﬁ—/ 2t4dt}
— g{t\/vaQ/(\/t‘lT_\/:Tl)dt}
= %[tM—Q

)

(0.2)
(0.3)

(0.4)

From Abramowitz and Stegun p.593,597, and Gradshteyn and Rhyzhik p.905,909,

the integral in this equation can be written in terms of an elliptic integral

dt 1 1
= — F(p,m/4) , cos = —
L - L Reny o) =1
/ o L plon/a) | cos(y) =
= — , T , e
g 2 2 ¥
where
m = k*=sin’*(a), mi=k?=1-m,

K = K(m)=F(r/2,m),

F(—=¢,m) = —F(¢,m) , F(nm+¢,m)=2nK + F(p,m),
F0,0) = 0,
F(r/2,7/4) = K(sin(r/4)) = % = 1.8541,
_ : _ramapr
F(m,m/4) = 2K(sin(r/4)) + F(0,7/4) = RN 3.7082.

Setting the constant of integration so that V(r) — r3/3 as r — oo gives

%[m/r“—ro—ro\/_( (arccos(%“)&)—[rilﬁf)] ,T>T)
é[r\/r —7"4—7“0\/_< (arccos<%>7%)+i[%%)]2>} . <7p.

V:
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Using (0.10,0.11) gives

V) = (1- Z,>rg¢§1[2r\§1g/4)]2 = (1 — )0.87402r2, (0.14)
V(ro) V2 (LA 0.87402r2, (0.15)

127

V(ry) = ‘/ﬁ[g(—\/;/mz - % = 1.08137. (0.16)

These last results can be verified using an infinite power series
ra (24)! o\ %
Yy S R . N 017
o/ ort ™ T [i4i(2i—1) \ 7/ (0.17)

Vo1 of, 1 (20)! ron 4

— == J91=rd/rtdr = - 42 : — 1

R /T ro/rtdr = gt o it GEE— ) 6=3) <r>  (0.18)
1%

2r r3 ra (20)! o\ 4
__4<v__) - 1+207“4”'+z‘!(z’+1)!zﬂ(4@'+1)( ) - (0.19)

r

Since surface area vanishes at r = ry from (3.15), the proper definition of the
origin is really » = rg instead of » = 0. So the complex V(T) and imaginary ¢ for
r <rg is not important. As we have shown in §3.1, most of the relevant fields are not
singular at our shifted origin. However ¢;; is singular at the origin and ¢ = 0 there.
Also, to avoid a curvature singularity we must have the Weyl tensor components be

finite everywhere. From §6.1, all of the curvature scalars are zero except for,

1 2rd A A\ At
U, — __( _ﬁ) (TJF Vo ZC)_ 2fo _ 1o (0.20)

r4 r3 2r3 6 674 2076

Evaluating this at r = ry gives

1 2rdN\ (m  0.87402A,r3 A, Aoy
U, = —— (129 ) (=4 == 0) 22 220 0 (021
2 ¢ < ra ) <r8’ + 2r3 ) 6 6rg  20r§ ( )
1/m 0.87402A 1 A
S e e L 0.22
¢ <7"S’ + 2 27"(2)) 3 ( )
Since ¢ = 0 at r = ry, the only way to avoid a singularity in W, is if
m = %(1 — 0.87402A,72). (0.23)
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From (2.36,2.12), for an elementary charge we would have m ~ ry ~ 10733¢m, whereas
the mass of an electron in geometrical units is M, =Gm,/c*=7x10"%cm. Since A,
is negative when () is real, it is not possible to get the two terms in the parenthesis
to partially cancel one another. So it does not appear that a singularity in the Weyl
scalars can be avoided by assuming the mass and charge of an electron. It is possible
that the physical charge and mass of an electron are actually renormalized values, and
that things would work out if one used “bare” charges and masses instead. However,
even if this happened to work out, it is not clear that we can avoid a singularity in
the Weyl tensor itself, since the tetrads are actually singular at the origin.

Now let us redo the calculation with r# = —r3, which corresponds from (3.16) to

the supersymmetry case with A, < 0. Changing variables with t=r/r. gives

3
V:_% (V_%>7 V = /\/r4+r§dr:r§/\/t4+ldt. (0.24)

Integration by parts gives

2 1 2t
/\/t4+ 1dt = §/\/t4+ 1 dt + 3 [t\/t4+ 1- \/;—%} (0.25)

= g [T [ (V- wtﬁ) RNCED
= %{t\/WJrQ

dt
—. 0.27
/\/t4+ 1} ( )
From Abramowitz and Stegun p.593,597, and Gradshteyn and Rhyzhik p.905,909,

the integral in this equation can be written in terms of an elliptic integral

< dt 1 |
_/x T - —§F(¢,W/4> , cos(p) = . (0.28)

Using a trigonometric identity we have

cos(p) = % = xz=cot(p/2) , ¢ =2arccot(zr). (0.29)
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Setting the constant of integration so that V(r) — r3/3 as r — oo gives

1 e
V= 3 [r\/r4+ rd — r2F<2 arctan(r—),%ﬂ )
r

Using (0.10,0.11) gives

Vir) = %3 [ﬁ_%] — 14662,
b0 g [1_\/5+%] — 95991,

These last results can be verified using an infinite power series

re (—=1)(24)!
ot Til24i (20—

L+ri/rt = 1+

Te

1)(7"
|

(0.30)

(0.31)

(0.32)

(0.33)

)M , (0.34)

Te

(Te>4i. (0.36)

r

1, 1 (—1)i(23)! 1
IR — 1 4 /rd ] = - - £ . - — .
R /r Fre/rtdr = g = gtV P i) (4=3) (5)  ©3)
ot N (120!
rd \ '3 20r47  al(i+1)M40(4i+-1)
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Appendix P

The electric monopole solution in

alternative coordinates

Here we investigate the charged solution (3.1-3.7), but with a different radial coordi-

nate where the origin is at p = 0,

po= VE= (=20 AL e = (ot 4207/, (P.1)
20?2 2
o= 1o 2 P , (P.2)
Ap(p* +2Q2/Ny)  \/p* +2Q%/ A,
dp - _ r LA _6QER
dr (rt —2Q2/Ay)3/% &3/2 dp dp? AypP®
With this new radial coordinate the solution becomes
=2
ds? = c¢adt® — % dp® — p*do* — p*sin®0de?, (P.4)
o= —vgfi 5, V=N =2&p’sinb, /=g=_&p’sind, (P-5)
&32p
Q2 AMES? 4N . Q*V 2 A
Fy = —A)= 1 — 21¢e—1-— 1-— P.
. ’ p? " Npp? 3N 2 App? A J ) (76)
IME?  Ap? Qe A
= 1- - 1—— P.
‘ p 38 7 ( Ab) ’ ()

190



where (') means 9/dp, and V is very close to one for ordinary radii,

S PNy 2.3/2 p*
V= g (/,,c/ dp — 3@3/2)’ (P8)

and the nonzero connections are

. aa’  4a’Q*¢ - - a - —ad  6Q%**
Tp=—-———+ Y=l =— , [}}=—+ "+
8 . N N 2
I, =05 =0} =135 = %7 (P.9)
~ - inZ@ - - ~
I, = —Cf—’QO = _apsv12n , T3, =13, =cotf , I'3; = —sinfcos b,

¢ ¢
8 g g s 2i0:3/2 -~ N 2a\/2 10 3/2
R e Y Y

— T _—
VYT VA p?

For this radial coordinate, g,, has a finite value and derivative at the origin, although

g"” does not. Also, the fields N, N /=N, /=g, Av, V=09", /=9 fouy V—99"",

vV —99uu, and the functions “a” and V all have finite values and derivatives at the
origin, because as before V(0) = /2 [['(1/4)]°/61/7 —2/3 = 1.08137. The fields F,,,

and \/—g ﬁyu are also finite at the origin, although f‘ij is not.
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Appendix Q

The electromagnetic plane-wave

solution in alternative coordinates

Here we consider the plane-wave solution in §3.2 for a couple different coordinate sys-

tems. First, to make the solution look more familiar we will transform it to ordinary

r,y, 2, coordinates. With the conversion z = (v —u)/v/2, t= (v+u)/v/2 we have

_0X°
roxke

—1lo

oXn

10 0 0

01 0 0

00 1/vV2 1/V2

10 0 0

01 0 0

00 1/vV2 1/V2
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00 —1/v/2 1/v2 |

00 —1/v2 1/v2 |




Then from (3.17,3.18,3.19) we get,

—1lo
gaaT wo—

> —la —1lo
9oy :Ty gaoT no—

faO'TU,LL —

VIR Q)T T -

focaT_lau =

0 0 —H/NV2+1/V2 HIV2+1/V2

0 0 —1/V2
-1 0 0 0
0 —1 0 0
0 0 —1+H/2 —HJ2
0 0 —H/2 1+H/2
—N =1,

0 0 fo [

1) 0 0 fy fy

0 0 fof

0 0 f f
fo-h o o
~fo =fy 0 0

0o 0 fi—f

0 0 f —fy

V2fe V2f, 0 0
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fuu :TyilafozaTilo,u

A, = AT,

From page 61 of [75] we have

f;w:

0 0 fi —f
I U A
) ~fe =f, 00
foo Sy 0 0

B, 0 -B, —E,

so the electric and magnetic fields are

EZ(fI?fyaO)a B:(_fyafx>0)

(Q.10)

(Q11)

(Q12)

Now let us consider the solution in another type of x,y, u, v coordinates such that

it matches the solution on page 961 of [66]. Let us assume some as yet unspecified

function L(u), and we will use the notation L' = 0L/0u. With the conversion & =
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x/L, §=y/L, 4 =+2u, v =v2v— (2® +y*)L'/v/2 L we have

1/L 0 —zl | L? 0
o 0 1/L —yL'/L? 0
7, = giﬂ = / i (Q-13)
0 0 V2 0
—a'V2/L —yL'\2/L (a*+y*)(L?/L*=L"/L)/V2 V2

L 0 xL' /2L 0
. axT 0 L yL'/\2L 0
T, = 7 : (Q.14)
0 0 1/v2 0
el yL' (x?+y?) (L2 /L24+L"/L)/2v/2 1/3/2

Then from (3.17,3.18,3.19) we get,

~L 0 —x L/ /2L 0
X 0 —L —yL' /2L 0
gaoTi U/L = ,(Q15)
el yL' HIV2 + (@ +y*)(L?/LP+L"/L)/2V2 1/v/2
0 0 1/v2 0
. 0 0
; X X 0 —L? 0 0
Gon=T, “Gac ™ Uu = 7(Q'16)

O 0 ($2+y2)Z + h+$2 + hxﬂjy — h+y2 1/2

0 0 1/2 0
where Z = f2 + ny + L"/)2L, (Q.17)
V=N =1, @Q18)
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0 0 0 2fs
0 0 0 2
pere - () "
0 0 0 0
—V2f. /L —2f,/L 0 2(xfetyf,) /L
0 0 0 Lf
0 0 0 Lvy
VR = (LT o f* T, = . (Q.20)
0O 0 0 0
~Lf, —Lf, 0 0
0 0 _fz 0
0 0 _fy 0
faeT74 = - @2y
V2 fl V2f,L (xfs+yf,)L'/L 0
0 0 0 0

0 0 —Lf, 0

y X X 0 0 —Lf, 0
fl/,u:Ty_ afaaT_ Uu = ’ (Q22)

Lf. Lf, 0 0

0 0 0 0
A= AT, = (0,0,—2fr —yf,, 0). (Q-23)

Let us choose L(u) in (Q.17) such that Z=0. Equation (Q.17) with Z=0 is a 2nd
order differential equation, and ignoring boundary condition issues, this equation can
be solved for arbitrary functions f,(u), fy(u) Then for the special case hy =h, =0

where there is no gravitational wave component, we get the solution in [66].
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Appendix R

Some properties of the

non-symmetric Ricci tensor

Substituting I'¢, =T'¢, + T2, from (2.61,2.20) into (7.21) gives

Rou(D) = D= Dy + 31000 + 50000, — T2, (R.1)

= (D0t T0ua) = Capw + Yaww) — (0, + 1) (T, + 15,)
#3004 05, (o0 + T50) + 5 (o + T2,) (T, + T5,) (R.2)

= Ruu() + 10,0 = T = Yo = Thalg, = 1015,
5 (T, o T T+ 15, 8+ T8, Y+ T8I, + T5,75,) (R3)
Bun() + Yoy = oy = Vo To+ 510, o0+ T80T (RA)
For the Abelian case this gives (2.65,2.66),

Rou(D) = Rup(D) + T30 = Ta — ToaTo, + 10,15, (R.5)

Ruw() = Ryu(l) + Tomia™ Yo = Yo Yiow = Yia) Yiow T T0w Yoo (R.6)
Ry = T¢ —T(Um)'ro‘ T[‘;a]'f(a(‘m)—l—TU T, (R.7)

[vulsa lop] ™ [vi]
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Substituting the SU(2) gauge transformation fﬁu —U fﬁ‘uU -4+ 200U U ! from

(7.29) into R,,, proves the result (7.41),

Ry (T)

I, 17
Do = ot + 3 olloo + 3Tl ~ Tall, = L (RY)
(UTs U + 620,07 = 50,0
(UTGU ™) = S (UT U
(VT U™t + 60U, U™ = U, U UTG U

oa)

U U (T2, U + 05U, U™ = 50,0

UTe U™ 67U U — 5gU,yU*1) (Ufgﬂ*l + 80U, U - 55‘U,UU’1>

/N

1
(n—1)

(T U™+ (=1 U, U ) (0T

[rv] [o1]

U™+ (n—1) U,HU—l) (R.9)
U /F\a o i-\\a 4 lfcr fa 4 li-\\a fcr _ /F\J Ta /I:[:'V]f[l;ﬂ} Ufl
N e e G B GO e T R T P

Ta 77-1 Ta 77-1 -1 -1
U,QFWU +UFWU@ +U,,LU,V —UWU,M

1 Ta —1 1 o —1 1 Ta —1 1 Ta —1
SUallon U™ = SUTG UL = SULTG, U™ = SUTG, U,

1
2

o —1 1 o —1
Vs U™ = UL U

1.5 -1 1,.5 -1
§UF(‘3‘,Q)U’# —|—§UF&Q)U,V

UTo, U~ UL U}~ U e U™+ U, TS U+ (2-n)U, U, — U, U

o o
UTT U, = U U™ + (n=1)U,U,, (R.10)
UR,, (DYU™. (R.11)

For the special case U = e~ we also get the property (2.17) that R,, is invariant

«

under a U(1) gauge transformation pr — fz‘T—i— O0P.r)-
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Substituting T'¢, = T2, + (694, — 62.A,)v/—2R, from (7.16) into R,,, using ['%, =

re —=I'2, from

(ve)

Ruu(T)

(7.18) and the notation [A, B]=AB—BA gives (7.19),

1 o Aa 1
o) T 5l ea) + 5
(T + (A= 02 A)V=28 ) = Tl
2 (T2, + (074, = 5540V =20) T

1
2

+38) (Fo,+ (074 — 574,) V=280
(o, +

re .. —Ig
vp,o ( varop (n—l)

fo D Tt
re 0o, — Do T — 0 led

(R.12)

(19, + (574, — 67 A, )\/—2Ab)< + (50 A, — 6§Au)\/—2Ab>

+2(n — 1)Ab-AyAu

I G ;rgurga + ;Fgargu — [ o
+2"4[1/,;4\/7/\1:

5 (A= G AT/ =20,

500, 0 A = 07 A V=20,

[0 (05 A — 05 ALV =21
_<5g~'4v_ 5§Aa)fgu _2Ab
+2(n— 1)Ab¢4u~’4u + 2Ab((2—n)A,,Au - A#Ay)

Ryu(f) + 2./4[,,,#} \/ —2Ab + 2Ab(-’41/>’4u — .AM.AV)

+(Aaff,‘u—f‘,fu./40) —2A
Ryu (f> + 2-/4[11,/1,} V _2Ab + 2Ab [AV? AN]

(e T3] = [, TV =240
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For the Abelian case we see that substituting f,f‘u = f‘,f‘u—i— (05 A, — 6314“]\/52'/&2/ 2

from (2.6) into (2.5) gives (2.9),

Rop(@) = Rou(D)+244,0V2iN)>. (R.17)
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Appendix S

Calculation of the non-symmetric

Ricci tensor in tetrad form

Here we derive the tetrad form of the non-symmetric Ricci tensor (2.11), which is
needed to calculate the Newman-Penrose asymptotically flat O(1/r?) expansion of
the field equations in §6.2. Let us define the “ordinary Riemann tensor” for a non-

symmetric connection to be

PA FA FA Fr A 7w A
Rﬁo‘T = FBT,U - FBU,T + FVTFZIO' - FEUFVT‘ (Sl)
For this appendix only we define the covariant derivative “;” to have the derivative

index on the right side of the nonsymmetric connection ff}u Then we have

éﬁ;o;T - 55;7;0 = (gﬁﬁﬂ' - fET&/;o - fgr&ﬁ;l/)
— (oo = Dhobor — [%,650) (5.2)
= [(5/370' - f‘gag)\)ﬂ' o f%'r(g)\,a - f‘li\af)\)] - 2f‘[lz/7'r]€,3§l’

— [(&r = 13,800 — T4, (6r = T080)] (S.3)
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= D5+ D506+ 15,6 — 5,106 — 2 6. (S4)
= (T3, — Ty + T4, 00, — T5,10)60 — 210 1650 (S.5)
= fiémfx - QFfZTT]fﬁ;u- (S.6)
Let us also define the “non-antisymmetric spin-coefficients” to be
Fabe = —Caoc€t” = —(Came — L%Can)e” = —Cagcs” + Labe (S.7)
Yabe + Labe, (S.8)

where we have made use of f‘ﬁu =Ty, + 15, from (2.61). The v, are the ordinary

antisymmetric spin-coefficients formed from the Christoffel connection, meaning that

Yoae = —Vave- For the source-free case (¥ =0) we have fg[u,u} =0 from (2.58), and using
f["‘w] =0 from (2.8) we see that the non-symmetric Ricci tensor (2.11) is equivalent to

the contraction of the ordinary Riemann tensor (S.1). Then from (S.6,S.8) we have

EggTeaV = 24805 + 21;[’;7} Capw (S.9)
= —2(c"s9ans€ (0)ir) — 200 11€" 57anse’ s (S.10)
= 2(e"57" 49 () Fan €’ o] + 2€" 8Tan s (€15 V g€ 7))

~€" gansr¢’ o — 20}, 1" ans, (S.11)
Rapea = 27" saFand + 23abs 7 1ed) — 2Vavied] — 20\ g Tabs (S-12)

= A "saVane — V" 0eVand + Favs ¥ ca — Vavs 7 ae
~Yabe,d T Yabd,e — Qf[ﬁdﬂabf, (S.13)

R = 7"sa¥he = 7"0c7ha + 3057 e = 7057 e
Y bed + Y bde — 2f[£d]:ycbf (S.14)
= e — Vved + 7 0aVhe — Vo (3 ca — 29 1ca))- (S.15)
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For computational purposes this can be simplified a bit. Let us define

Y% = Ybd — Vbgly

so that

1

3

Then the Ricci tensor becomes

B ~c ~c 1 ~e
Ryg = 5%+ (3/ bd — 59/ bg5h) (3/ he — 3% he4>

(ﬂ/ bf — %3/ b95f> (ﬂ/f od — %%Jﬁ)

~c 1. c
+2 (9[ bf — _q[gbg(sf> P)/f[cd]

3
N ~c = 1og e l.g ~c l.g -
= Fbae — Vb ea — 55/91793/ de + §4gbgﬂ/ de + gﬁfgbgﬁfffd

~c 1~ c
+2 (%/ bf — gﬂfgbgfsf) Y iea

N o N 2. N
= e — ¥t ca + 2587 (ea — 5% (Y ra — 3 1a))

3

9.
2396 Y

= Fpae — Vo3 ca + 2507 1ea) + 5

= e+ 25% (27 (ca) — 3 ca)-

n (S.21), Y/

) = 0 because f’g‘ﬂ =17,+717, from (2.61) and I

[rd] =

(2.8,2.20).
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(S.16)

(S.17)

(S.18)

(S.19)
(S.20)
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(S.22)

=0 from



Appendix T

Proof of a nonsymmetric matrix

decomposition theorem

Here we prove the theorem (6.3-6.12). Proof: From [64] p.51, any antisymmetric
real tensor fu as in (6.10,6.12) can be parameterized in Newman-Penrose form by

the three complex scalars

bo=rfis , ¢1="(fra+fi3)/2 , ¢2= fra (T.1)

From [64] p.53-54, there are three tetrad transformations which do not alter (6.3).

Type L
ly = loy My = metal,, mi—ms+aly, n,— ne+a*ms+ami+aal,, (T.2)
G0 = G0, 1 — d1+a P, da = P20 P1+(a") 0. (T.3)
Type II:

Ng = Ny, My —> Me+bng, mi — me+bng, o — lo+b"my+bmi+bb*n,, (T.4)

Go = b2, P1 = d1+bPa, Po — Po+2bd1 +b . (T.5)
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Type III:

0

Ne — NoA, ly = ls/A, My — mee?, mi — mf,e’w, (T.6)

o1 = b1, do — doe /A, Py — pae P A. (T.7)

Using type I and II transformations, we can always make either ¢o =0 or ¢y=0

by solving a quadradic equation and performing a tetrad transformation with

o —2¢1 £ 1/(2¢1)% — 4¢o 2 Lo = —2¢1 £ /(261)% — 4290
B 200 B 209 '

(T.8)

Note that a type I transformation does not alter ¢y and a type II transformation does
not alter ¢o. Therefore, if ¢ # 0 at this point, we can make ¢y = ¢ =0 by doing a

second transformation of the opposite type to the first one with

S0 02

b= — or a =-— .
2¢1 201

(T.9)

Then with @ =—2Re(¢1), u=—2Im(¢;), we get from (T.1,6.10) the first case (6.3,6.9).
The procedure above fails if ¢; =0 in (T.9), in which case there is only one nonzero
scalar, either ¢ or ¢o. If the nonzero scalar is ¢,, it can be changed to ¢y by doing
type II transformation with b=1 followed by a type I transformation with a*=—1.
Furthermore, we can make ¢y real by doing a type III transformation. Then with
4 = ¢o we get from (T.1,6.12) the second case (6.3,6.11). Since f”uf“(,:f“bfba and
det(f*,) = det(f%), we see from (6.10,6.12) that this second case occurs if and only
if f"uf“(, = det(f“V) = (0. If we change u and @ from real to imaginary and do not
change the tetrads, ¢"* will stay real and f“* will become imaginary, and therefore

W¥F becomes Hermitian. This proves the theorem.
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Appendix U

Calculation of the exact Tbac in

Newman-Penrose form

Here we solve the connection equations (2.59) in tetrad form (6.54-6.64) to give the
result (6.66-6.95). In the following linear combinations of the connection equations

(6.54-6.64), the right-hand-side T, terms cancel,

12, = 2y ( 01 ogtiofl(EZ;), (U.1)
Tl = T+ ( 0P — Oft — 03 iu;) (U2)
RO ( 03t 1 Ot 4 *0 &LZ;) (U.3)
T, = Y, += ( O — 072 + 07, (U.4)
Y5 = Th L(-0F - 03+ ol (U5)
TS = T§3+§( 03* + 03" — O, (U.6)
o= Th - 07, )
th = Th- 500 Us)
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(ke

+3 (o +op oy ((11113))),

sof2 — 0P 4 +op UIFY
(Ee |

(_io34 (éfg)) —ov (éf%) N §28 ig) ’
( oy ((11:1:2{;)) ((11::|:F U)) iﬂﬁ;ﬁ;) ’
1< o o o)

( 02 (1+0%) — *03* (1iu)® + O (1Fin) (1F4)) ,

( O (14+0%) — *O0* (1Fiu)* + O (1+in) (1£1)) ,

+ 55 (FOP(1-3) + *0F (1F0)° — O (i) (1))

— (—703 (1-0%) + *0* (1+0)* — O (1Fiu) (1Fa))

(U.9)
(U.10)
(U.11)
(U.12)
(U.13)
(U.14)
(U.15)
(U.16)
(U.17)
(U.18)
(U.19)

(U.20)

% (—OM(1+i)(1+@) — OR(1—iu)(1—a) — OR(1+i2), (U.21)
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5+ % (—OB(1—iu)(1—) — O3 (1+ii)(14+1) — OF (1+4?)) , (U.22)
8+ gz (OR(+i)(1+a) + O3 (1-) (1—i) + OF(1-i2) , (U.23)

it o (0F'(1—i)(1-a) + 0P (1) (1+a) + OF (1-i?)) . (U.24)



Performing the linear combinations above using (6.45-6.51,6.65) gives

T
i
s
Th
T3
T3
Th

2
i’TQB

1
Tl

3
i’T13

3
T3

Du 4 4dr ~9
Txa) © 3c(1xa)’
ATL 47T ~
Tlta) T 3e(ixa)’
257211 47T 4
Tax) T 3e(ixw)’
Dv/—N, 4ruc? g 9 9 ATc? A9
+ 72 = uDue® — uDud + 7%
v—N, 3c 3¢
AV—N, 4muc® . Arué? -
T 3 It = aAue? — aAac® — 2 7
—N, c c
5v/=N, Adriue?. Amite?
— 7t = woue? — aduc? — 7t
V=N, 3c 3¢
T%Q = T?14 =0,
1 1 271(2 F 3id)
5 (T ww) — S(Foue — adue?) (1) & % 5
1 om -
5 (60 (1Fit) — dac® F ugine?)(1:£it) F 30(1—;u)j4
1 2w N
:I':_ 5vv2_.6\\2 1:|:\ —4
2( uc” — 1ouc”)(1+£iu) F 30(1432'?1)] ;
1 1 21(2 F 3id)
;5(720 + ) — i(iéiﬁ — uduc?) (14in) £ %j‘*
1 o .
5 (60” (1Fit) + 0ac” F ugine?)(1:£ik) F Wim)j‘*
1 o2 ~
_6vv2 .6\\2 1:‘:\ At g
:F2( ac” 4+ iouc”)(1+iu) F 30(1:Fiﬂ)j ,
1 1 27(2 & 3)
ii(pw + pfw*) + §(j:iD1)éQ —aDuc?)(1Fu) £ 73Tc((1—:|:711;)j2
1 o .
+5(Duc(1:a) + iDu? F aDac’) (1) F thﬂ)f
1 2r 4
+—(Dac® + iDu®) (1F) F ——— g’
2( uc” + 1Duc”)( $u):F30(1j:11)‘7’
1 1 271(2 F 3) -
iﬁ(,uw + prw®) + §(ima2;2 — aAue®)(141) £ %jl
1 2 A
£ (—Aud (1F0) + iAu? F udac?)(1£a) F sz)jl
1, 0 i . 2 4y
:F§(Auc iAuct)(1+a) F m] :
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(U.25)
(U.26)
(U.27)
(U.28)
(U.29)
(U.30)
(U.31)
(U.32)
(U.33)
(U.34)
(U.35)
(U.36)
(U.37)
(U.38)
(U.39)
(U.40)
(U.A41)
(U.42)

(U.43)



4
jjYl?

2
5

) 4 .
trw(l4in) F rw*(1Fin) £ &2% + udu — —Fiﬁj‘l) (U.44)
¢ c

1iu
1:|:u (6u— + 71w — 7w > (U.45)
+pw(1+i *(1 V)i’D‘éz 1D+ T (U.46)
1iw pw(lta) F p*w*(1Fa) £ Uz —aDi+ —uj .
L) (zDu— + pw — pw > (U.47)
& uv
1:F (:I:,uw 1Fa) F p'w*(1+a) F zAu— — uAU — —ug ) (U.48)
it)
liFw ( — pw + prw ) (U.49)
rw(tF1) vw(u+1)
=z i'r%z; - (U.50)
ow(iut1) Aw(iuF1)
A (U.51)
Kw? vw?
7 5 ng = —7, <U52)
ow? Aw?
ia  Th=-T (U.53)
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Appendix V

Check of the approximate ;' in

Newman-Penrose form

Here we will show that the O(A,") approximation of T¢, in (2.62,2.63,2.64) matches
the exact solution (6.66-6.95) for ¢ = ¢ = 2 = Z = 1, which amounts to a second
order approximation in w and @. Much use is made of g,, and fab from (6.3,6.10),
Yeab = —Yaep from (6.15), £,/4 =t ,—uu, from (6.33), and the field equations
(6.45-6.51). To save space, only one component of each type will be shown.

In tetrad form (2.62) becomes,

1 ra (F £ £ ra (f £ £
Tc(de) ~ i(f d(fec,a - ’}/Safbc - fygafeb) + f e(fdc,a - P)/gafbc - ’ygafdb)

+fca(fad,e - ’Ygefbd - Vflefab) + fca(fae,d - ’ygdfbe - fYSdfab))

1
+§(£,cgde - f,dgec - g,egdc)
27T ﬁa - 1 A'CL ~ 1 A'a A
+7 (J fcagde + g] fadgec + g] faegdc)7 (Vl)

Tiay ~ =(F4(fore — Wafor — Voafon) + f9(Fira — Voufor — Voufiv)

N | —
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+fla(fam - 722fb1 - 7f2fab) + fla(fa2,1 - ’Yslflﬁ - 731fab))

1

+§(€,1912 - 5,1921 - 5,2911)
27T o N 1 ~o a ]_ A1 A
T (32f12912 + §J2f21921 + §]1f12911) (V.2)
WD — i (V.3)
= aDu— —u .
3¢ J s

Tz(n) ~ fal(fm,a - ’Yi)afw - VSaflb) + fza(fal,l - 731fb1 - ’Y%lfab)

1
+§(£,2911 — L1912 — £ 1012)
27T 108 1 ~o A 1 Ao A
+? (Jlf21911 + §]2f21912 + §]2f21912) (V.4)
47 A
— aDu—uDu + 3—”@2, (V.5)
c

Tiay ~ [ ire — Walsr — Wals) + 1 (fars — Yoy for — V11 fab)

1
+§(£,1g11 — Lagn — Lagn)
27T ~No N 1 O A 1 Ao A
T (]2f12911 + §J2f21911 + §]2f21911) (V.6)
=0, (V.7)

1. . o ) )
T1(23) ~ §(f 2(f31,a - ’Yil’))afbl - /yi)af?)b) + f 3(f21,a - ’ygafbl - ,Yi)anb)
+f1*(faz3 — 723fb2 - 7§3fab) + [1“(fas2 — Voo fos — 7§2fab))

1
+—(£,1923 - 5,2931 - 2,3921)

8
27T ~No N 1/\' “~ ]_/\' A
+7 (J2f12923 + §]1f12931 + §]4f43921) (V.8)
1 1 27 .
= (it + udw) — (adi—udi) - B—Zzaﬁ (V.9)
N or .
- %(5@ — 60 — 3—Ziaj4, (V.10)
1 -~ . . R . . R
T3(12) ~ §(fa1(f23,a - VSafb3 - 7§afzb) + fa2(f13,a - ’yi)afb3 - 7§af1b)

+f3a(fa1,2 - 722fb1 - 7f2fab) + f3a(fa2,1 - 721fb2 - 731fab))
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T3

T3

1
+§(€,3912 — C1G23 — 2013)

27T A P 1 ~o a 1 A1 A
+? (J4f34912 + §]2f21g23 + §J1f12g13)

U(—3210U — Y2317 + V31200 — Y1320)

N . N . N 1v NN 277'.\A.
iU(Yy1320 — Y31200 — Y2311 — Y32140) + E(uéu—uéu) + ?zu]4

=«

1 21 A
(81 — 70 + 70) + Sit(idin — 7it + i) + g
c
el s S A o s N
w(du — 70 + T) +§zu(7w—|—7r w* — Tit 4 7 )

1
(0u — 7" u + 1) + §@u(ﬂl + ')

¢

W(0t — U+ TU 4 TiU + Ti)

(0t + Tw — TwW"),

¢

(fal(f?)l,a - ’y?liafbl - 7?af3b) + fa3(f11,a - ’Yijafbl - f)/i)aflb)

N NI~ NDIF NDR N N N N

+f1a(fa1,3 - 733fb1 - ’st]gab) + ]E1a(fa3,1 - ’721fb3 - ’Y§1fab))

1
—|—§(€71913 — L1931 — C3911)

27T Ao A 1 ~o A 1 aAp A
+— 72 fr2g13 + =52 forg31 + =" fasgn1

c 3 3
W(—y1310 + Y31190)

Kuw,

fa1<f13,a - ’Yi)aszs - ’Ygaflb) + f3a(fal,1 - ’YZLIEbl - ’Yfﬂgab)
1

+§(€,3911 — L1913 — C1013)

27T AP 1 O A 1 Ao A
+— 7 faagi1 + 552 far913 + =77 f1013

c 3 3
W(—y31190 + Y131%) — 1U(—y131T + Y31170)
—Kkw?.
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(V.11)

(V.12)
(V.13)
(V.14)
(V.15)
(V.16)

(V.17)

(V.18)
(V.19)

(V.20)

(V.21)
(V.22)

(V.23)



In tetrad form (2.63) becomes,

1 - A A N A A n A n
T, [de] = E(fde,c_’yflcfbe_’ygcfdb + fce,d_'ygdfbe_’ygdfcb - fcd,e+72efbd+72efcb>

A /A

o ) ec_A»e c | 24
T30 <Jdg ]Qd) (V.24)

Ty ~ §<f12,1_7?1fb2_731f1b + f12,1_7?1fb2_7§1f1b - f11,2+'}/%2fb1 +'}/%2f1b)

4 /4 N
Ta <]1921 - ]2911) (V.25)
c
A
= —Di+ —j? V.26
Ut 520 (V.26)

1 . . . . . . . . .
Tipy ~ §<f23,1_'731fb3_'7§1f2b + f13,2—7f2fb3—7§2f1b - f12,3+7i73fb2 +733f1b)

41 [ N

T3 <ng31 - ]3921) (V.27)
Lo N y . 3 4

= 5(5U — V32110 — Yoz31U — V31200 + Y1321) — §]3 (V.28)
1 4rr -

= 5(512 — 1w — Tw) — 3—ng (V.29)
1 27 -

= S(6a—ion) - 35" (V.30)

1 - " " " o A A A A
Tapg ~ §<f12,3_'7[1)3fb2—'7§3f1b + f32,1—7§1fb2—731f3b — f31,2 +7§2fb1 +7§)2f3b)

A [ N
T3 (Jlgzzs - ]2913> (V.31)
1 .\ y -
= 5(_512 + Y2311 + V32170 + V132U — Y3120U) (V.32)
1
= —5(571 + 17w — TW"), (V.33)

Ty ~ §(f13,1_7?1fb3_7§1f1b + f13,1_7?1fb3_7§1f1b - f11,3+7%3fb1 +’Y§73f1b)

4 /4 N
T30 <J1931 - ]3911> (V.34)
c
= —Y3110U + V131U (V.35)
= —Rw. (V.36)
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Appendix W

Kursunoglu’s theory with sources

and non-Abelian fields

Kursunoglu’s theory[23] is roughly the electromagnetic dual of our theory, except it
does not allow sources, and it does not ordinarily allow a non-zero total cosmological
constant, and the Lagrangian density does not ordinarily use our non-symmetric Ricci
tensor (2.5). Here we show that Kursunoglu’s theory can be generalized to include
sources, and it can also be generalized to non-Abelian fields, but in both cases it must
be done in a rather ugly and inelegant way. We also allow for A # 0 and show that the
theory can be derived from a Lagrangian density which contains the non-symmetric

Ricci tensor (2.5). The Lagrangian density is

b
167

1 y
_ﬁ,/—g (n—=2)A, + L, (v, Ve, G, A - . ), (W.1)

LT),N,,) = V=N |[N"R,,(T) + (n—2)A,

pT
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where A = A, + A, matches measurement, and the metric and electromagnetic field

are defined to be

V=9g" =V=NNw /=g F, = VENNTHAZ - (W2)

1
— Eapuv
2n2i

It is helpful to decompose f‘j# into a new connection ff}u and a vector B,

re, = T2, +(69B,— 02 B,)V2iN)”, (W.3)
where I, = re + (o2 rc,,,] (5§‘f[‘(’m])/(n—1), (W.4)
B, — ;fo . (W.5)

(n—1)v/—2A,

By contracting (W.4) on the right and left we see that fl‘i‘u has the symmetry

Fga: (Cl‘é/ ) ng,

(W.6)

so it has only n3—n independent components. Using R, r =R, (D)+2By, V2 i
w © [v.p] b

from (R.17), the Lagrangian density (W.1) can be rewritten in terms of ffju and B,,
B2 5) = o [ Ry 25, BT 1
—E\/—_g(n—m[\z+£m(u”,@/ze,gW,A(,...). (W.7)
Setting 0L/6B,, =0 and using (W.2) gives Faraday’s law,
(V=ge™* Fop) o =0. (W.8)
Using /—g ™ =™ this equation is satisfied if we let
Fo=A,—Auv. (W.9)

Therefore, we can alter the Lagrangian by using (W.2) to define vV—NN ] ag

VENN = /=g emerp, AP N2 (W.10)
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With this definition the term

V=9 Ay Blag = (V=g AuyBa) o (W.11)

is a total divergence so it can be removed from the Lagrangian density.

Therefore we can rewrite the Lagrangian density again as

1 s
L) gpr A) = —7o- V=N [N*M R,,M+(n—2)Ab]

VTG (=2 + L s g Ay ), (W12)
where N, is defined as
VENN = /=g g" + /=g e Fo N, 2 V2 (W.13)
Setting dL/6(y/—gg"”) = 0 gives the same Einstein equations as before

~ 1 o
Ry + MoNwp) + Azgy = 87 (Tvu - mnga) ; (W.14)

1
Gy = 87T, — Ab( — ngvﬂ) +A, ( ~1) gu (W.15)
and setting 0L/ 5f3u: 0 gives the same connection equations but without a j* term,
Nopup =T Nay =T, Nyo = 0. (W.16)

Setting 6L/JA, = 0 and using e"*“7¢e, ), = —66] gives Kursunoglu’s version of Am-

pere’s law

0 = Sl (5ao)+ W

ATV ) |
- 2\/§bl'\/__g (V=97 0500(Rup + ANup)) o — 4757 (W.19)
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AL/

— b (EV’MT(N[WL] + ﬁ[yu]//\b));w — 47TjT

221
A1/2

= b EV’MT(N[,,MW] + ﬁ[uu,w}/Ab) — 47TjT

221

where ;7 is defined the same as before

-1 oL,
J B vV —3g aAT

This is satisfactory because from (W.2) we have

8 = B (L

——c Ny, = ——=¢,
221 [vi] 22i w g

(L
9A,.) ")

N*[#V]+O<Ag3/2)> = w7 +O(Ag1)

The identities (4.3,4.4) without the j” terms become

GO‘

1
<N(“,,) _ 555]\15);

_3V-N
T2~y

3\/_

Y = Nled] R ool

N"[PU] Nigpi-

(W.20)

(W.21)

(W.22)

(W.23)

(W.24)

(W.25)

The ordinary Lorentz force equation results from taking the divergence of the Einstein

equations (W.15) using (W.24,W.25,W.21,W.2)

87T, = @Z.U+Ab<N(“,,)

3V-N

= VT Nl (’R[Up g+ AbN[O'p J )

AL/2
87r\/§zAb/ i

2 V=g
3V— N"[UP]
2 V=g

Eopvt

1

—SNE)

6

2214 87/2 2A1/2

- FTZI

2 At/ 2

15, = Fuj’.

6

(W.26)

(W.27)
(W.28)

(W.29)

(W.30)

Let us see if Kursunoglu’s theory works for the non-Abelian case. We define the

electro-weak field tensor f“* as

g1/2dfap =

2v/2i
217

1 d Alvp) AL/2
_— NV2 Eapur N [ M]Ab )

(W.31)



We will use A, as in the non-Abelian Lagrangian density (7.20) instead of B, as in
(W.7). Setting dL/6A, =0 gives the dual of (7.47), which is the Weinberg-Salam

equivalent of Faraday’s law,

(gV2dcmeer f,) o — /=20, gV £, AL = 0. (W.32)
Using g¥2de™er = ¢7wer  this equation is satisfied if we let
fap = 2Ap0) + V —20[As, A, (W.33)
as seen by substituting (W.33) into (W.32),

0 = €“*2Apaw+ V=20 Aas Ao — [2A)0 As)
+ 28 [[Aa, A, Al)) (W.34)
(24 00 + 20/ =20 (A Ay + Acdy — Ay oAy + AvAya)
+ AN (A AL A, — AL ALAL)) (W.35)

= 0. (W.36)

Therefore we can alter the Lagrangian by using (W.31,W.33) and e,,,,e" = —45[7(15;]

to define NY2dNval a9
NY2NA) = gh2dvmerf N2 )8/2 (W.37)

With this definition we have a term tr(g¥2dz®# f, f,,) in the Lagrangian density.

Expanding this out we find that the terms are all total divergences or zero,

tr(gl/ngapl/lﬁA[pya]A[ﬂ’y]) — tr(g1/2d€apuuAp’aAu7u)
= tr(g”e " Ay 0 Ay) v, (W.38)
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tr(g" et A A, A]) = 2tr(gV* e A, 0 AL AL
= 2tr(g¥ e A, W Ay A+ ALA, WA+ ALALALL) B
= 2r(g"*e " A, A, A,) o3, (W.39)
tr(e [ Aa, Apl[Av, Aul) = dtr(e*"M A A, ALA,)
= —Atr(e" Ay AL ALAL)

= —dtr(e" A, A ALA,) = 0. (W.40)

So the term tr(gY/2dervh fopfuu) can be removed from the Lagrangian density. There-

fore we can write the Lagrangian density in a form similar to (W.12),

. 1 s
L g Ay =~ Nt [N*# Rup + (n—2)Ab]
=N + L s G Ay ), (WAD)
where N, is defined as
N1/2dN#;w _ gl/ng,uu + g1/2d61/,uapfapA;1/2/\/§Z~' (W42)

The calculations subsequent to (W.12) are also similar for the non-Abelian case. So
the non-Abelian Kursunoglu’s theory works in a way. However it is a bit questionable
because we must assume no L, when calculating (W.32) and its solution (W.33),
and then we subsequently introduce a £,,(A,) term after the sourceless Lagrangian
density is derived. This problem does not occur for the Abelian case because the A,
in (W.9) is independent of the B, in (W.7). The problem also does not occur with
the theory considered in §7, where we use the direct definition of the elector-weak

field instead of the dual definition.
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Appendix X

Possible extension of the theory to

non-Abelian symmetric fields

Now let us calculate the field equations with the Lagrangian density (7.20) and the
special case A, =0, NI =0. The theory we get depends on how we define the phys-
ical metric g"#, and there are several possible definitions (7.11) which are consistent

with the Abelian case (2.4). We will use what appears to be the simplest definition

gV2dgr — NY2d N (X.1)

g"* g = Itr[g"*g™]/d. (X.2)

1/2d in the Lagrangian

The theory we get also depends on whether we use A, /—gor A.g
density (7.20). If we use A,g¥?? we get A,g¥?¢4-A,NY?¢=Ag"?? for symmetric fields,
so that the cosmological constant terms have essentially no effect on the theory. If

we instead use A,\/—g, the difference between this term and A,NY?¢ has the effect

of giving a mass to the field associated with the traceless part of g,,. In fact we will
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find that this mass term is imaginary m = thy/2A;, so unless something unusual is

happening, the use of A, /—¢ with the metric (X.2) is probably not going to give a

physically acceptable theory. Nevertheless, in the following calculations we will use

A,\/—g in the Lagrangian density (7.20) because it is effectively the more general

case. It happens that the results for the choice A,g¥?

can be obtained by setting to

zero the mass term that occurs in the theory, which is any term with a A, factor.

Setting §L£/5(NY2N7)) =0 using the identities N = [det(NY2IN)]2/("=2) and

g=[det( NV N7w))]2/(n=2) gives our equivalent of the Einstein equations,

7%(””) + Abgyu + Azgu,u = 87TSV,LL
0L, 6Ly

where 5, = 25(N1/2dN(W)) - 25(g1/2dg#1’) '

For the present let us assume that S,, =0. Using

Al o 120 fa lxa fo no T
Ry =T —Fa(ym—{——r r¢ +=r¢1? —1971

Vo 9" vu oa 9 oatvu v op’

and the definition

AL 0L _( oL )
arg, " arg,  \argL )

we can calculate

107 o 1/2d ar-pv 112d Huvtio Sa ST
—167-—5 = S05o,0.T N2 Nm +§N/ N™T7 556765

vyus oa

cYa v

112d —HuvTa o ST 1aT Mo 1/2d a7-pv
+§N/ NG 050707 + 50507067 NV Nn
—056,6010 NN — NVXNWTT 556765

viot op

1/2d n7py so g7 w 1/2d n7py so g7 w

—2(NY N“%(SV{S@(L])M—(N/ Nﬂéﬁéa(S[py ) w
_ 1/2d nr-lpT I 1/2d a7-pT 1/2d ar-pv 1T
= —(NVXNT) 5 -G NVNT — NN
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+1fwgaN1/2dN4pT + %Nl/QdN%prwga

2
wT 1 VT 17 v
+5g ((Nl/ZdN—| ),w + §N1/2dN—1,u Fyu + §1’\VM]\/*1/2d]\/'—W )
+oR(NV2ANT) (X.7)
16 A,:C _ (n_2) (Nl/QdN—|[pw]) + l <N1/2dN—1uyfp . pr N1/2dN—|uu>
ATg, “ 2 v v
+% <f\gaN1/2dN—|pT . N1/2dN_|prga> 7 (XS)
AL 1 1 . 1+
o _ o /2d AT wT 1/2d ar-pv T T 1/2d anr-pv
lor s = (n—1) ((N ) ENVHNED g L e )
TW 1 VT T v
+(N1/2dN4[ ]>,w . 5 <N1/2dN4,u, Fyu i FVuN1/2dN%,u, )
1 (ta T T
-3 (rpaNl/QdN*P — NVEHN rpa) . (X.9)

Setting L/ 5ffp:0 using a Lagrange multiplier tr[Q”fﬁ;V}] to enforce (7.18) gives

AL 65 AL 05 AL

A7, (n—1)Alre —(n—1)Ale,
_ (N1/2dN#pT)7B + fnguNl/QdN4,uT + N1/2dN%p1/fwl7;5

0 = 16r

1xa 1/2d nrpT 1 A r1/2d nrprToa
— T NVHINYT — S NVHNTTTS,

T

+2< (55 3 (Nl/QdN—(,uz/fwlp/N _ f\guNl/%lN—Uw + f\gaNl/ZdN—kTp _ N1/2dN_|Upf?a>
n_

)

B 03 <N1/2dN%’“’f; _ f; N2 N f\gaNl/2dN—|m- _ NV2dperpa )
2(n—1) H H o

+ (ni [ (FRVVN 1) — RN VN ) ) (X.10)

Using N7#1 =0 and the metric definition (X.2) gives

T [ T VT 1=a - 1 o
0 = (gl/ngp )75 + qugl/“g“ + gl/ngp F,,ﬁ _ §F5agl/2dgp _ §g1/2dgp F,Ba
0% . - . i
+2(n—51> <g1/2dg’wrﬁu _ Fﬁuglﬂdgﬂv + F?aglﬂdgap _ g1/2dg"”1“§‘a>
62, N ~ 3 ~
5] <g1/2dg/u/1"'£u T g/%g 4 [0 gV2geT g1/2dngga> (X.11)
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Contracting with g, , and taking the trace gives

0 = tr[—(g"*"g")sg,,] + (n—2)tr[[} Jg"* (X.12)
= —dn(g") s — g"*trg" s, + (n—2)tr[f’gp]g1/2d (X.13)
= (n=2)(—d(g"*")5 + g"*tr[[,)). (X.14)

Rewriting again gives

1 1

0 = &7t D+ T, - e - LT, el
+ 55 <gp,l/pr . fp gMV + fwa gap . gopfwc >
2(7’L — 1) i m oo oo
% o i i
o ‘U/VFT . FT lull/ Fa agT _ UTFCY ) . X‘15
20— 1) (g o — 108" + 15,877 — 8715, (X.15)

Multiplying on the left by g, and on the right by g, gives

1 1

0 = —8u\B + gwpfg)\ + f;ﬂgTA - ngkfaa - EfgagwA + gwAtr[fga]/d
gwp < HUT I v na o opTa )
[P [P ghv L @ g0p _ gop]
2(n—1) \& T b Tloa8 "~ 8 hon ) B
gw,B < LVTT T v o _oT oTT @ >
5 (&, 1,8+ T —g7T : X.16
2(71— 1) & Vi V‘ug ) g oa | 87 ( )

Contracting gives

T T T VT 170 T 1l oria T o
0 = gp »t leug'u + gp Fup - §Fpagp - §gp I‘pa + gp tr[rpa]/d

1 VT T v o _oT oTT @
+2<n_1> <g,u Fuu _Fuyg“ +Faag — g Fa’a)

2(n—1)

(817, — 7,8 + Toug™ — 712, (X.17)

T T T VT 1+a T 1l r7a - =
= gp P + FZugu + gp Fup - érpagp - §gp Fp()! + gp tT’[Fpa]/d
1 VT T v na ot oT T
— (8T, ~ 7, + Tog” — &%, (X.18)
I 1 VT T v
= g7, T gtrllh]/d+ 35 (g“ ry,, +17,g" ) (X.19)
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Let us consider the possibility where only the traceless part of sz/u is contained in

T

Ly» in which case (X.16) reduces to

0 = —8u\s + gwpf‘g)\ + f‘z.)ﬁgf)\' (XQO)

From the trace of the symmetric part of this we see that f(Ty ) 18 given by the Christoffel

connection composed from ¢r(g,,). From the antisymmetric part we see that f[TW]

satisfies the equation

0 = gyt Th.58m — gApffﬁw] — g8 (X.21)
Combining this with its permutations gives
0 = gApff’ﬁw] + ff’ﬁw}gw = 0= ~l[/6w] + g’\”ffﬁw}gm (X.22)
From this we find that
trT,) =0 (X.23)

Writing g,,, = g, 70 + &,,71 + &, 7 + g, 73 and using (X.22,X.23) and the fact that

7;7;+7;7;=0 we see that

oL oy = 0. (X.24)

Assuming that g}, is invertible we get

e _
F[ﬁw] = 0. (X.25)

So ', must have a traceless part in I (o) and not just in F[TW],

Now let us assume that f‘[xw} =0. Setting 6£/6f‘fp =0 using (X.7) while using a

Lagrange multiplier ¢7[Q/*T (vy) to enforce the symmetry and using N vl =0, A,=0

224



and the metric definition (X.1) gives

0 — _(g1/2dng),B _ %fwguglﬁdgm— _ %g1/2dgpl/fwlﬁ _ %fwg“gl/2dg,u,p _ %g1/2dgﬂ/fwﬁﬁ
"éf%a g2 | % g/2d ngf\ga
%55 ((gl/ 21g“T) o + %gl/ Mg Ty, + %flugl/ ng“”)
1307 (Vg )0 + Le¥igiy, + L, g (X.26)
Contracting gives
0 — _<g1/2dgp"r>7p _ %qugl/zdgm _ %gl/zdgpuf;p _ %fw;ugl/ng,up _ %g1/2dg7-yfw£p
_'_%f\zzagl/ngpT X %gl/2dgprf\zca
) (grgen o+ Lgviger, 1 i g ) (X2
= U (g 4 gt ¢ L g, (x.28)
So we can rewrite the connection equations as
0 — _(g1/2dgp'r)’ﬁ _ %fwguglﬂdgm— _ %g1/2dgp1/fwl7;5 _ %fwgugl/ng,up _ %g1/2dgﬂ/fw55
+305,8" g + g/ T, (X.29)
Contracting with g, and taking the trace gives
0 = tr[—(g"*g")s8,,] + (n—2)tr[l} Jg"* (X.30)
= —dn(g"*") s — g"*"tr[g"” sg,,| + (n—2)tr[l% Jg¥* (X.31)
= (n—=2)(—d(g"”*")s +g"*"tr[[5.)). (X.32)
Using this result the connection equations become
0 = —g"5— %fgug’” —~ %g””flﬂ - %féug“p — %g”fﬁg
+215,87 + 215, — g tr[5,]/d. (X.33)
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Multiplying on the left by g, and on the right by g, gives

1 = 1+ 1 = 1 -
0 = B — §gwp]‘_‘g)\ QFUJBgT)\ ngp BpgupgT)\ - §gwpg Fp/jg'r)\
1 P 170 o
+§gw)\r o + Erﬁagw)\ - gwktr[rﬁa]/d' <X34)

Multiplying on the left by g, , and on the right by g,,, gives the same result. Combining

the connection equations with their permutations gives a rather useless result.

1 - 1 T 1 T 1 TV
0 = <gw)\75 - §gwprg)\ QF B8N T ngp ,BugupgT)\ - igwpg Fpﬁgr)\
1 ale 170 Mo
+ §gw)\rﬂa + §F6agw)\ - gw)\tr[r,é’a]/d>
]_ - 1 T 1 T ]. TV
- <gﬁw7/\ - Egﬁprg\w - §F,B>\g7'w - §gﬁpr)\ugupgrw - égﬁpg Fp)\g‘rw
1 1+ = o
+ 2g,8w St QFAang gﬁwtr[rka]/d>
1 i~ 1 T 1 T 1 TUT
- (gA,B,w - §g>\pFZﬂ D) 2w8rp — §g)\pr Hg”pgrﬁ - §g)\pg Pﬁngﬁ
1 1+ By
2 8usT 50+ 3 T8 — EnatrT0l/d) (X.35)

Now let us assume that g,, =~vg,, where g,, has no traceless components and
is a matrix. Then (X.34) becomes

1 =
S Bwgrr —

0 = YGuwrg + V,89wr — 5

1 = 1~r 1 =
§'ngprg’)\ - érwﬁ’ygT)\ - §gwprﬁ,87

1 Mo 1 o e
+§79mrga + §F5a79m — Yguntr[T3,]/d. (X.36)
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Combining this with its permutations gives

1 T 1 T 1 T 1 nd
0 = (mw +7,89wr — 57%,3% — §megm — EVF,BWQT/\ — §gpr§m
Lol + Lpa tr[e.]/d
+ 379wl 50 + 51 87 9wx = VGun r[l'5a)/
L 95,05, — 317 Loty L sl
- Y9Bw + YAGBw — 579[3% Aw § ,BAfygTuJ - 57 )\ﬁgﬂu - Egﬁp wrY
1 o 1 o o
+ 57980 80 + 5186980 — V950trIRa]/ d)
Lol — AT L Trngrs — 2rT%
— (798w T Yw9rg — V9ot wp T S ATIrB T ST wadrs T 59xet 5T
1 o 1+a o
+ 57906050 + 5100793 — 9natr (TS, /d) (X.37)

= Y981 %, + 9L 00Y

1 o 1 ey o
+ <79m,5 +7890x + 579\ B0 + ST5a90r = Vgurtr[L5al/ d)

1

507950 = 195tr(05,)/d)

1 o
— <’Yggw,A + Y 2GBw + 5’795wrm +

1 o 1 o o
— <’Y§/Aﬁ,w +7wdrs + 57938 00 + STEaV908 — Yorstr Toal/ d) - (X.38)

Now let us consider the special case where g,,, and fg‘# are composed of the identity
matrix and only one of the 7; matrices, either 71, 75 or 73. In this case g,, and fﬁu

commute, and the connection equations (X.34) simplify to

0 = BuwrB — gwpfg)\ - f;BgT)\ + gwkfga - gwktr[fga]/d‘ <X39>
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Combining this with its permutations and using (X.32) gives

1/2d> 6)

0 = (gwm — 8oLl — T0 58 + 8un1'5s — 8.087(8
— (B — 8ol % — T + 8ol — 81,8787,
- (g,\ﬁ,w - gApfgﬁ - fw/{wgﬂ—ﬂ + gAﬁfga - g,\ﬁde(ng),w) (X.40)
= 2g,, 15, + (gwm + 8l o — BrtT(8" 8 ras]/ 2d>
- (gw + 8ol S0 — Bl T8 8ran]/ 2d>
- (g)\ﬁ,w + gABfga - gkﬁtr[gaTgTa,w]/2d> ; (X.41)
5, = %g”ﬁ (gw + 85,05 — 8aulr[8°78ra0]/2d

T8\gw T gmfj‘ﬁa — Est7T[8" 8 0wl /2d

—BunB T gw)\fga + gw)\tr[gaTgTa,B]/Qd) . <X42)

Contracting this over ? gives a generalization of the Christoffel connection gives

= 1

ry = ) (8%78ran — 17878 00]/2d) (X.43)
M = lgf (g +—t g (8" 8rar — 178778 0]/ d)
Aw 2 Buws (2—’@) Bw T T,

]- T QT
TErgw T m £5(8" 8raw — 178780 0] /d)

1
- - — o - o . X.44
gw)\ﬂ (2—71/) gw/\(g gTa,ﬁ tr[g gra,ﬁ]/d)) ( )

Now let us consider the case where the traceless components are small. We define

gl/2dgrh — gl2d(gvn iy ng:FS#_FHIf‘W (X.45)

where h <1, g =tr[g""]/d, 'y, is the Christoffel connection formed from g,,, and

tr[h"*]=0. (X.46)
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Lowering an index on the right side of (X.45) we get
(8/9)"*'gls = OhT — I, (X.47)

Using the well known formula det(eM) = exp (tr(M)), and the power series In(1—x) =

—x— 2?2 —2%/3 —xt/4... we get[85],
In(det(I—h)) = tr{in(I—h)] = —tr[h%] — %tr[hﬁhg] +0O(h*).  (X48)

Taking In(det()) on both sides of (X.47) using (X.48,X.46) and the identities det(sM ) =

s™det(M) and det(M~')= 1/det(M) gives

In(det((g/9)"*'gh]) = In((g/9)"*™") = —% trihgh7] + O(R?),  (X.49)

1724 trihohg)  tr(hohZhy]  tr[hbhZhiR)] .
e/ =~ 3im=2) " Bdn—2) = admn—z) oW X0

Taking e on both sides of this and using e* = 1+ z + 2%/2... gives

trihthg]  trlhohSh7)  tr[hehIhLhS]  (tr{hohg])?

c'’p o'’ a'p

2d(n—2)  Bdn—2)  4d(n—2) @ 8&(n—2)

(8/9)"* =1~ +O(h?). (X.51)
From (X.45) we see that the inverse field g, satisfies

8= (&/9)"* (Gu+hup + B hay + B R Ro) + O(RY). (X.52)
Let us also define the field h,, by

8oy = Yup T oy (X.53)

Using (X.51,X.52) we can relate h,, and h

Vs

by = Tt ROH tr(Rghg]

vp = hwpthy au_gvum
o _ tr[h?he trlh?heh” _
+h§hghw—hwu—g M+O(h4). (X.54)

2d(n—2) 7" 3d(n—2)
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Note that the definition of h,, in (X.45) is the same as in linearized gravity with the
substitution g,,, — guu, Guu — M- However we do not get h,, ~ Py — Guuhl/(n—2)
analogous to linearized gravity because the equivalent of —g,,,]zi /(n—2) would arise
instead as —g,,tr[h7]/d(n—2) in (X.50), and this term vanishes because of (X.46).
Nevertheless we will do all of our calculations using BW rather than h,,, in which
case with the substitution g,, — guu, guu—> My, all of our calculations will also apply

for linearized gravity except for a few final results which use (X.51,X.54).

The connection equations (X.29) to O(h) are

1 1

7,pT 71T T 1 1, PV T 1 vV IyT
0 = (gl/2dhp ),,8 + §F2‘ugl/2dhu . Enggl/ngu + 5gl/2dh,0 Fyﬁ . 591/2619'0 Hyﬁ
1 T 7, 1 T 1 1.TV 1 TV
_|_§Fﬁlugl/2dhup o §Hﬂug1/2dgup + 5gl/th le/jﬁ _ §g1/2dg HLJB
1 a 1,pT 1 a T 1 LATT @ 1 T T
=S TBag N+ SH g g — S gV NS, 4 S g g T HE,, (X.55)
Using I(g"??) 5 = g*'I'3, and dividing by g"** gives
0 = Wy— H.g™ — g Hly + g" Hi, (X.56)
0 = huxs— Hopy — Hyop + gurHg,. (X.57)
Combining the permutations of this gives
0 = (}_Lw)\;ﬁ — Hwﬁ)\ — H)\wﬁ + gw)\Hga)
— (P — Hpro — Hopy + g t15,)
— (Mg — Hawp — Hpro + 9rsHZ,) (X.58)

= 2Hgno + hurg — hpun — hag + 9nHg, — gpuHyy — 9rpHS,.  (X.59)
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Contracting this with ¢ and ¢* gives

0 = 2H§fw—l_1g;)\—nH§“a = HY, =-——h

0 = 2Hg", +hs— 20, +nHg, —2HG, = Hg*, = h.,. (X.61)

So the final result is

1, . . 1
Hazx = 3 hau- h oy hu e e N
© ( s + j2ie% 3 )+ 2(2_n>

2 (gal/l_li;u + gual_ﬁ;u - gVﬂi_lﬁ;a)' <X62>

To find the O(h?) solution we assume that f‘f}# =T}, +Hp,+ K, and solve the

connection equations (X.29) to O(h?),

1 1 1 1

_ P T P T UT vV 1T 1PV LT
O = _§Kﬁﬂgu + EHBNhM — §g,0 Kyﬁ + §hp Hyﬁ
1 T 1 T 7 1 TV 177’1/
—§Kﬁug“p + §Hﬁllhup — 59 KSB + éh Hzljﬁ
+%Kg‘agm — SHER + S K — SR H, (X.63)

= _Kgugl” _ ngK;ﬁ +ngKga
1 PN LoV IJT T 7 7. TV a 1,pT 1T I
0 = - pﬂT_KTpﬂ+ngKga

+%<Hpﬁu?l¢ + BZHTVB + Hfﬁuhﬁ + B:H/Wﬁ - Hﬁaa}_lm - ’_”LerE‘a)- (X'65)
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Combining the permutations of this gives

0 = —Kpsr — Krpg + gpr K5,
+%(Hpﬁu7l‘i + hyHrys + Heguhly + W Hyug — Hiohor — hpr HE,)
+Kprp + Kppr — gpp K7
_%(Hmhg + Wy Hyur + Horuhly + hiy Hoyr — Hohgy — higpH7,)
+ K pp + Kprp — 95K,

1 7 Tv 7 v a7 o
_§(H7'Pﬂhg + hTHﬂV,O + H/B/’,Uh¢ + hBHTV,O - HpahTﬁ - hTﬁHpa)

- 2K57'ﬂ + gPTKga_ gﬁngcx— gTﬁKgéa
+%( Hposh? + 1 Hppy — HagyhS — B Hypr — Hygphs — B Hog)y

+ Hyoghl + 10 Hyos — Hpoph? — 0 Hpgy — HygrhG — hGHpor

— H3 Ry — hyr HG + HE R, + g, HE + Ho s + hogHES,).

(07

Contracting this with ¢#? gives

v 1+ (e 7 1 a7,
0 = (2-n)K?, — hyHE + ShOH?, — HEW + S HE I

Tul'p T g tirallp

This can be simplified by substituting (X.62),

. 15 17 av7 15

R Heyp — ShOH® = 250%ho + —— RO go AT — 1P he:
w9l e = g w oyt Gerlte T Sl g e
= h™ hyap /2,

e Lloai, 17 7 1 e 11 54 g
Hopph® — THO B2 = LR b + — L g hr pov — L he hP
g o Hualtp = Glavult =+ 55y Gar iz 2 (2—n) e
= hyah™ /2,

170 1 s

= 0=2-n)K’, — L), = K° = heRY) .

( n) 0 2( v a), TP 2(2—71)( v a),
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(X.66)

(X.67)

(X.68)

(X.69)
(X.70)
(X.71)
(X.72)

(X.73)



Using this last result and (X.62,X.60) we can simplify (X.67),

1 o o
Kﬂq-p = 5(_ngKBa+ gng + ngKpa)
1 1.0 70 1.0 1.0 10 10
+ 3 (FHyoshT = B Hogg + Haorht) + h Hpgr + Haghf + B oo

— Hro3h8 — W Hyop + Hpophl + hHpop + Hoorh + hGH o,

+ H§hpr + hpe H, — H hg, — hg,HY, — Hoheg — hogHyy ) (X.T4)

1 — — _ _
= — hahV hochu . . hahu
4(2—71) ( ng( v 04)7/3 +g/3,0< v a)7 +g ﬁ( v a),p)

(Bpa;ﬁ + Bﬂp;tf - haﬁ p)ha

| _ - o
m(gpahw;ﬁ + gﬂphww - ggﬂhw;p)hT

>

RIS

7 7 A 1 10 1w W 1w
(hpa;ﬁ + hﬁp;a - hffﬁ;p) - —_n)h’r (gPth;B + gﬁphw;a - gUﬂh’w;p)

8(2

(7150;7' + 717-3;0 - Bdf;ﬁ)hg +

1 — — — —
. he. = gorh’ 5)hS
8(2—71) (gﬁ w;T + grs w;o g w,ﬁ) P

R Ry + Pngia — horg) + @hmgﬁohm + 9r6hEy — Gorhs)
+ Loy + Bprs — e )15 + ﬁ(gmhﬁm b Gprh = Goph®, )G
1Ry + hris = opir) + @B;wzm  gorh®,, — Goph.)
— Z(Proip + hgrie — hopr )G — @(Qmﬁﬁ;g + 9prhly — Gophl )N
— LR (o + Birio — hosr) - @ﬁz@mﬁz;ﬂ 93RS — Gosh)

7 A 7 10 1 W W LW \LO
(h‘ﬂlﬂﬁ + h‘PIB;U - h'UP;,B>hT + _n) (gﬁth;p + gPIBhw;o’ B gUPhUJ;B)hT

O|— 00| 00| 00|~ 00| O©Co|—= OOl OOl OOl ol ol 0ol

8(2
T0/(T 7 7 1 1.0 Tw Tw Tw
+ h‘r (hBU;P + hpﬁﬂ - hUP%ﬁ) + 8(2—n) hr (gﬂah’w;p + gpﬁhw;a ~ Yop w;ﬁ)
7 T 7 10 1 Tw 1w W \1,0
+ (hpa;r + th;O' - hfo'T;p)hﬁ + m(gmhw;T + nghw;J - go"['hw;p)hﬁ
T0/(1 7 7 1 1.0 1w LW 1w
+ hﬁ(hpa;’r + th;J - hUT;p) + mhﬁ(gpahw;r + gTPhw;a - gUThw;p)

(Bg;ﬁBPT+ h hf" B h h/BP_ Bﬁpﬁg;r

— h% h.g— hgh%. ),(X.75
4(2—7’L) a;p B B a,p)( )
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4(2—71) [_gp"'(hl/hw)»ﬁ + gﬁp(huhw)ﬂ' + .gTﬁ(hl/hw),P

+ gPT(ﬁz;aiLg + thz;a) - Bi;ﬁﬁp’f - BPTﬁg;B}

1 7 7 _O' _0' 1 1
+Z[(hoﬁ;p - hpff;ﬁ)hr + hT (hffﬂ;p - hpa;ﬁ)

+ (BﬂU;T - BOT;B)BZ + BZ(BBU;T - BUT;B) + BPT;UBZ + Bgﬁm;a]' (X-76)

This result can be checked by comparing its contraction over ¢g?” to (X.73). It can

also be checked by comparing its contraction over g™ to the contraction of (X.65),

K., = %(}W o+ Hop ) (X.77)
Lo (107 2 1 . .
= =h" =2hav-n — huia 290 b’ — guuh.
2 (2( 2 3 ) + 2(2_n) ( g Wil g 1 w,a))

1(1,7 . 1 7 7 7
= 2(2hgps — By ——(2¢ah”. — gyuh”. (X
+2 (2( hau,u h’VM,a) + 2(2—71)( gauhw,u g /lhwu)) h ( 78)

1 7ws T T 1,707
= S hay + hauh”) = £ (B B o
1 -7 - 1 o
— hthe. he. h* hYhe) .. X.

Now let us calculate a weak field £, term for h,,, assuming symmetric fields.
Substituting our solution for fgu into (R.4), we find that because of the trace operation

there are no O(h) terms of (7.20). Using (R.4,X.77,X.51,X.46), the O(h?) terms of
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(7.20) are

1

Eh = _16_7T gl/thT'[ gyﬂ(Kg‘u;a — KCC:(II;;L) + H;LLHO‘QQ — HgOzHo‘ay)
- 71”“([’[3“;& - Hg(y;u))]
1
— 1o (87 A(n=2)Ay — g"*d(n—2)A] (X.80)

1 I & o’ a v ov o ov a
= _ﬁ gl/thr[(hll Hyu)§0¢ - Kocu; + H VHJa - H OéHUV

. BVMHOC + BV,uHoz

v avip

— h2hT A, /2] (X.81)
1 1.p1,0 7 uv « ov «
= 1o g2 Mr[hORO N2 — B o HE, + H o HE,

+ Kg,V — H? HZ, — W'HS,. . (X.82)

avip

Using (X.62,X.60,X.61,X.73) gives

o = [ Momere e (LoRe L (os0h 2
— 2 4|20 o_pmw [ 2 a _p o apw o W
h 167 T|: 9 ot ,Oé(2( vip M5 ) + 2(2_n)( v wip Guop w; ))
1 ov 1 oVl w
+ <2 O¢+2(2_n)g wa)
1 1 . . .
=(h% he  — hgp® 0%h”. 0Ch?.  — g, h*®
X(2< 0’,l/+ vio )+2(2_n)( o w,u+ v'wio g w; ))
NN 7Sy S WY S S 3 77— ¢ R0
22—m) > T 7 Y (2—n) v (2—n) >V
gy2d

= — t’f’[ BgiLZAb/Q

167
+ Wb (—1+1/4+ 1/4)
+ A g hy (12 — 1/4 4+ 1/2(2—n) + 1/2(2—n))
+RMLRS (1 4+ 1/4+1/4+ 1/4+1/4—1)/(2—n)
+ Ry iR ((1/2 = 1/4 = 1/4)/(2—n) + (1/4 4+ 1/4 = n/4)/(2—n)?)
+ Wy 0 (1/2 4+ 1/2) /(2—n)
+ B, (—1)/(2—n) ] (X.84)
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gl/2d

167

tr| Bgﬁ;Ab/Z
— W, /2
T (14— 1/ (n—2))
RS, (n-2)
— B, /A=)
o )
+ h""he

;v

/(n—2)] (X.85)

1/2d
g LUV Lo FNTIZN « TV pLw 1p1,0
= T Il h kg, /2 4 B ahy A = B, /A(n=2) + BERG Ay /2

— ()% a/2(n=2) + (KRG, )i/ (n—2) ] (X.86)

The total divergence terms on the second line have no effect on the field equations
and can be removed. So the final weak field Lagrangian density is

g1/2d 1- _ _ _
R L T T
3or | |2 el ot

1

£ 2(n—2)

RIS+ hgh;Ab] (X87)
The field equations for h,, can be found from the Lagrangian density (X.87),

0 = 32WW — 32WW — 397 (W).G (X.88)

Shrt OhPT a(hm;a)
2 VSO, o vV SO Q
= (—55“5 O huu; —|—25é‘ (57)5 hs. ., +

pUT P

2 o 7w 7
T =09 9"hS.,, .o + 200, (X.89
a''viu 2(n_2)gp g UJ7},L)7 + bltp ( )

Tp;a;a + 2?1/((17_;0);0( + mng]tLg;a;a + 2AbeT (XQO)

The field equations for Bvu can also be obtained by simply substituting the O(h)

solution (X.62) into the traceless part of the exact field equations (X.3). Using
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(R.4,X.62,X.60,X.53,X.54,X.46) gives

0 = 2 [Hl(/xp,;oc - Hg(u;u) + Abgyu - Abgl’ﬂ] (Xg]')

= 2 [ L (R + e — Fropsa)® + = (Gaw o + Guah e — Gulia)s®

2 e Hos s ) 2(2_77/) T M T KT )
1 —
— ——h%.. Ayhy, X.92
(2—71) oa( 1) + bltvpu ( )
7 o 7 « 1 LT« 7

= _hu,u;oz; +2ho¢(v;,u,); + mgvﬂhr;a; +2Abh’/ﬂ' <X93>

Contracting this equation gives
R0 = (2—n)(AhS + hl..%). (X.94)
So we can also write the field equations as
0 = —huues™ 4 2ha()” — Gouhi™ + Mo (2R — gupuhl). (X.95)

Now let assume that we can ignore the difference between covariant derivative and
ordinary derivative. In that case (X.93,X.95) match the “gauge independent” field
equations[66] of linearized gravity except for the A, mass terms. In linearized gravity

one often assumes the transverse-traceless gauge condition
hua;*=0, RS =0. (X.96)

Here we don’t have the same freedom because in the O(h) coordinate transformation
x¥ — x¥+E&Y, the parameter ¢¥ has no matrix components, so f_zl,u — fLW— Svin— Euw
cannot affect the traceless field Bz/u- However, nothing stops us from seeking solutions
which satisfy (X.96), and this assumption also satisfies the contracted field equations
(X.94), and it is consistent with the divergence of the field equations (X.95). Assuming

(X.96) as a special case, the field equations (X.95) simplify to

Tp:® = 204hu. (X.97)
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Equations (X.97) are like the field equations of massive linearized gravity but with

imaginary mass m = ihy/2A,. Below is a z-directed plane-wave solution,

0 0 0 O

_ 0 hy hy O

hy, = sin(wt — kz) ) E* — w? = 2A,. (X.98)
0 hy —hy O
0 0 0 O

Since A, >0 we have k > w, and the phase velocity is less than the speed of light,
Uphase = wW/k < 1. (X.99)

However, k > w is the opposite of what is expected in quantum mechanics where

p=h<k> FE=h<w> m=y/E?>—p?. It also allows the possibility of solutions like

00 0 0

— 0 ]jL+ }_lx 0

By, = el@t7r) . A — K2 =2A,. (X.100)
0 hy —hy O
00 0 0

Because of solutions like this, theories which contain fields with an imaginary mass
are commonly labelled as unstable. However, the scalar field ¢ in the Weinberg-Salam
theory has an imaginary mass, so this is not necessarily a problem.

Before considering 71,,# as a Weinberg-Salam ¢ field, let us first assume that waves
with imaginary mass are alright. It seems correct that vppese < 1 as in (X.99) and
it seems reasonable to ignore e® solutions for the same reason that e™* solutions
are ignored for a real mass, i.e. because these solutions satisfy unrealistic boundary
conditions. Let us find an effective energy-momentum tensor for BW and check that
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the plane-wave solution (X.98) has positive energy. The energy-momentum tensor
can be obtained by extracting the O(h?) components from the exact field equations

(X.3). Using (R.4,X.62,X.60,X.76,X.73,X.53,X.54,X.46) gives

87T§Tp = —t’/’[Ka - Kg(q—;p) + H? Hy,, — HgaHg + Abng - AbgTP] (Xl()l)

TP Tpttoa p
; 1
,
4(2—n)

1 7 7 170\ « 7 7 70\ « 7 70\ «
- 5(((h0a;p - hpo;a)hr>; + ((hacr;‘r - ha‘r;a)hp); + (hPT;Uha); )

(ng(H;)BZ);a;a - 29/)7(’5&0712);& + Q(BZ;QI_IPT);O‘)

JN"
ha;a

(2—n)

1 1,0 1,0 , © 1 oW oW Lwo
- (§(h7;p + h’p;T - h"'ﬂ§ ) + 2(2-71) ((57' hw;p + 6/) hw;T - gTPh’w; ))

170 Lo _ 3, O 1 opw oW Lwo
+ (Q(h’r;oc + h’a;T h’TOG ) + 2<2_n> (57' hw;oé + 50<hw;7' g'rahw; ))

1.7a el 5, « 1 apv apv LV o
X (ﬁ(hmp + hp;o - hop; ) + 2(2_n) (60 hl/;p + 5p hl/;ff a g(f/’hw ))
T tr[h?he]
—Ao [ R¥R,,. — g, —a v X.102
b( p bt gp7'2d(n_2)):| ( 0 )

= 1r[gor (B h)a" /4(2—n) = gpr (R h2); " /2(2—n)
+ (hgiahpr);®/2(2=1) = (hoas(ph?))™ + (Rpah)iai /2 = (hprich?):" /2
+ hI ho,[—1/2+1/44+1/44+1/4—1/4]/(2—n)
+ RS b [—1/2+1/4—1/4+ 1/441/4]/(2—n)
+ hepTho [1/2 —1/4—1/4—1/4—1/4]/(2—n)
+ R RS [(—2= 2414+ 14+n+1—1-141)/4(2—n)* + (1 + 1) /4(2—n)]
+ grohs hoeo[1/2 — 1/4 = 1/4]/(2—n)*
+ hZ g [1/4 —1/4]

+ ho. b [1/4 +1/4]

+ B oy [—1/4 — 1/4]
+he b2 [1/4(2—n) — 1/4(2—n)]

T, VP
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+ h_RhE [1/4]

a;T!'osp

+hZ R [1/4 —1/4]

a;T'pio

+he_ho_[1/4(2—n) — 1/4(2—n)]

w;T! Ypso

— Ny(BS hesr — gprhlh /2(n—2))], (X.103)

v

875y = tr[=gor(Ah)a" [AN—2) + gpr (B5,,1T) " /2(n—2)
- (Bﬁ;ai_lm);a/%n—?) - (Baa;(p}_lg)>;a + (ﬁpoﬁg);a;a/z - (}_LPT;UBZ);Q/z
+ BTPQJBg;J/2(n_2) o Bz;pﬁg;‘r/él(n_z) + Bi;aﬁg;a/2 o Bg;aﬁaﬁa/z

+ h he 4 — Ny (hohyr — gprhiohl [2(n—2))]. (X.104)

a;T'osp
Contracting this gives

8#55 = tr[-n(h“h")...* /4(n—2) + n(h2 h3).*/2(n—2)

- (hz;ahl;j)§a/2(n_2) - (h‘g;uh‘g);a + (hth)§a;a/2 - (hﬁ;ahg)§a/2
+ hﬁ;ah3;0/2(n_2) - hz;uhg;u/4(n_2) + hau§ah5;a/2 - h‘z;ahg;a/Q
+ hg ot 4 — Ay(hi Rl — nhlhg [2(n—2))] (X.105)

— U [(RSRY) 0 (n—4)/4(n—2) + (32, 55).* /(n—2)

- (Bgﬁﬁ>;a;a/4(n_2) - (Bg;uﬁg);a
+ hﬁ;gh3;0/4(n_2) + ha#;ahﬁ;o/Q — hy hb. /4

wa'vo;

— Aph i (n—4)/2(n—2)]. (X.106)
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So the energy-momentum tensor is

snly, = 87 (Sn— %gmég) (X.107)

= t7[=gpr (NS h0):0:™ /8 + Gor (BORLL) 0" [8(n—2) + gpr (BT, 1), /2
— Gorhly. 0, /8(n—2) = gprh™" (B, J4 + gprhl HEL /8
— (Rahpr)* 12(0=2) = (Roas(h3))* + (Rpoh)i0s™ /2 = (hprioh), /2
+ hep By [2(n—2) — B hS./4(n—2) + hT. h., /2 — hT. hep /2

T Ypio

RS BG4 = Ay(Bohar — gy hh4)]. (X.108)

;T op
From the field equations (X.90) we get

0 = tr[(_BVma;Ol + 2FL(()ZI/;p);oz + gPVBZ;a;a/(n_z) + 2Ab]_?‘PV>BZ] (Xlog)

= tr[—hy,*aht + RS B+ B, hY + B YRy [ (n—2) 4+ 20k, RY] (X.110)
J2I) T w;a; 4 pvitT

vipsat 't pvial O

= tr[=hyy *RY A B Y A B R 4 By [ (0 —2)]

vip'tT '

— tr[=hup Rl RO R A RO R R Rpra /(n—2) — 2M,h,,hY). (X111)

vip' T piv' T
The symmetrization and contraction of this are

0 = tr[_(BVPBZ>;a/2 + Bg,(pil:) + Bl(j‘rig);u + Bz;aBPT/(n_Q)];a

— [P B B R B B PSP/ (n—2) = 284D, hY], (X 112)

0 = tr[=(h7hg):" /2 + 2hy 17 + (hEhD) " [2(n—2)]a

— tr[=hL R 4 2h8 W o 4 WS ORT. /(n—2) — 20M,hRY). (X.113)

o8

Adding to (X.108) the expression (X.112)/2—g,.(X.113)/8 gives a simpler form of the

energy-momentum tensor which is valid when the effect of source terms in the field
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equations can be ignored

8nlr, = tr[—ng(B;’BZ);a;a/S + ng(}_lﬁﬁﬁ);a;a/&n_Q) + ng(Ba BH);Q/Q

ol
— Gor bl G, [8(n—2) = gprh™ GBS, J4 + gorhl I /8

— (h&ahpr):® 12(0=2) = (Roas(h5));* + (Rpoh$)ias™ /2 = (hproh?), /2
+ hep By [2(n—2) — e RS [4(n—2) + hT. hS., /2 — h. hep /2

+ hg hG, /4 — Ny(Bhur — gorhhg /4)]

;T Yop

+ tr[=(huphY). /2 + B B+ Ry, 4 B s [ (n=2)]0/2

(r'Yp)w
— e[l B B R RGBT B Rria ) (n—2) — 206, Y] /2
— Gortr[=(RJRG) % /2 + 2R3 B + (hghg) [2(n—2)] .0 /8
+ Gprtr[=hL ARG A 200 B o+ WS ORT. [ (n—2) — 20,h7RY] /8 (X 114)
= tr[=gpr (MShL):05" /16 + Gor (R5 01" )0 /A + gpr (RERG), 0/ 16(n—2)
~ (hoas(oh?))* 12+ (pohf) . /4 = (hpriohd).% /2 + (RGRS),, ). /2
+ he hg., /4 — b hG. [4(n—2) — g, by, /2] (X.115)
81Ty = tr[=gpr(BhE):0:" /16 + Gor (B2, 1 )0 /4 + Gor (hSRG) "0/ 16(n—2)

- (Baa;(pﬁi)>;a + (l_lpif]_lg);ﬂé;a/zl - (BPTKTBZ);Q/Q + (BIET]TL;Y);V);Q/Q

+ hg hg, /4 — B he . J4A(n—2) + hS .0t /2], (X.116)

a;T'0p
When averaged over space or time, covariant derivatives commute and gradient

terms do not contribute[66], so the averaged energy-momentum tensor is

8t<T,,> = tr[hg

Of;Th?;p/4 - }_I’Z;p}_lg;T/Zl(n_Q) + Eg;a;(pB:)/Q]' (X117)
This result simplifies when h% =0 and B‘,};a =0 as in our solution (X.98). Note that

our averaged energy-momentum tensor matches the result for gravitational waves[66].
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It is surprising that neither the non-Abelian character of h,, or the mass term in the
field equations affects the energy-momentum tensor. As with gravitational waves, we

see from (7.5) that our solution (X.98) has positive energy density,

8m<Tpo> = tr[hd,hee)/4 (X.118)
= tr[ﬁi;oﬁi;() + B%;OB%;O + B%;OE%;O + Bg;oﬁg;o]M (Xllg)
= tr[h2 + h%Jw?/2 > 0. (X.120)

Now let us consider the Buu field as a possible replacement of the scalar field ¢
in the Weinberg-Salam theory. In Weinberg-Salam theory the ¢ field has imaginary
mass just like h,, in (X.97). The Lagrangian for ¢ is Ly,=(0¢/0z,)(0¢/0x")/2—V(¢)

with potential V(¢)=—pu?¢*/2+|\|¢*/4 so the field equations are
0 = OV/06 + 826)02" 0z, — 12 + |\ + 02600, (X.121)

These are solved by ¢g=+/12/|\] which minimizes V(¢). The potential V(¢) also has
an extremum at ¢ =0, but the imaginary mass means that this is a maximum rather
than a minimum. A weak-field approximation like our analysis with }_ll,u would probe
small deviations of ¢ away from ¢ = 0, and this is not really the correct approach
for an imaginary mass. Instead, the assumption is that ¢ will “condense” to the
constant ¢y which minimizes V(¢), and the effective Higgs field is then the deviation
of ¢ away from this constant value. To see if the fLW field behaves like the ¢ field of
Weinberg-Salam theory we must look for a non-zero constant h,,,, which solves the field
equations. For present purposes we will assume cartesian coordinates with g, =,

and I'}, =0, so that there is no ambiguity about the meaning of a constant Buu- We
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will ignore the traceful part of the Einstein equations temporarily and hope that these
give g,, ~ 1y, when they are subsequently solved. Then using (X.3,X.5,X.54) for a

constant i_z,,u, the traceless part of the Einstein equations to O(h?®) become

0 = Y0000+ SY0T, = T0 5, — & tr [ 200, 5, + T80, - 10,75, ]
oA, (gw _ étr[ng (X.122)
- %Tgurga + %Tgargu — T, — étr [%Tgurga + %Tgargu 17,0,
LA (hyu+h3hau+h3hghw—hm ;Z[gf;)) I R R (X123

where the connection equations from (X.29) determine Y7, in terms of Py,

0 = =Y5,0" =) = (" =h")Y5 = Yo, (0" —h") — (™ =h™) T},

HL5a (17 =) + (T —hT) TG, (X.124)

There are a couple interesting special cases where we can do an exact calculation
of the traceless part of Ayg,, on the second line of (X.122). If h,, has the form of
a linearly polarized plane-wave solution (X.98), then using 772 =1 and 7,7;+7;7: =0
from (7.5) we have hohZ =diag(0, |h |?, |h.|?, 0)1. From the equations used to derive

(X.54) we get

(1= e )

= ) (X.125)

8up = (ol + Bw) = (gop! + Bw)

(= TheP) 7
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For an arbitrary traceless Hermitian 2 x2 matrix M we have

a b+ic
M= , (X.126)
b—ic —a
M? = (a® + 0>+ )1, (X.127)
A =det(l+ M) =det(l — M) =1-a*>—-b*—c (X.128)
(I+ M) =(-M)/A, (X.129)
det[ AY2(1+ M)7'] = 1. (X.130)

If hy,=g,,M then we have h%hg =09 (a® + b? + ¢*)I. From (X.45) and the equations

above we get
8o = Gopl + oy, det(g,,) = A'det(g,,,). (X.131)

In both cases there is no value of Buu besides Buu = (0 which zeros out the traceless
part of Ayg,, in (X.122). So at least for the special cases considered, the h® terms in
(X.123) do not allow a solution to our field equations the way that the ¢* term does
with the Weinberg-Salam field equations, and the terms on the first line of (X.123)
will have to play an important part.

Let us try to solve the connection equations (X.124). Some simplification gives

0 = X0 0" =05 = Xgn" —n™ )5 + X507 +n" L5,

14

TR 4 BT+ TG R BT — TSR — BTG, (X.132)

0 = 27,5 —2T7pp + ZTgain

+ Y ppuh + WYy + Toguhtls + WY s — Y8 hor — hpr TG, (X.133)
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Contracting (X.133) over 2 gives

« 1 o 7 vNo a 10 Lo
T4, = m(zﬂfﬁ#thrQha s — Y3.hg —hoY5,). (X.134)

Combining (X.133) with it permutations gives

0 = 2T 5, + 2T 5 — 2750
— Yppuht — WY rys — Troguht — WY g + TG hpr + hpr TG,
— 2Wprp = 27 ppr + 277,785
+ Tﬁwﬁﬁ + f_Lng,,T + prfl‘é + BZTBW - Tga}_lﬁp - ﬁngfa
— 215 — 2 sy + 20 100
+ Yopuhly + B0 gy + Lopuhtt + B sy — Tooheg — heg Y5, (X.135)
4Tﬁfp = _2Tga7707_Tpﬁuﬁg_BzTTVﬁ’_TTﬂuhg_EZTPVB‘l'TaaBpﬂLEmTaa
+ 200,80+ L aruhs+hG Y g+ o hlg+ D g = T3 sy —higy T

+ 200 0+ Yo g hls+ DI o+ L gty =0 hr g —hrp Yo, (X.136)

It is unclear how to use this to obtain an analytical expression for T7 . We will have

to leave this work unfinished.
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