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Λ-renormalized Einstein-Schrödinger (LRES) theory

• Einstein-Maxwell theory can be derived from a Palatini Lagrangian density,

L(Γλρτ , gρτ , Aν) = − 1
16π

[√
−g gµνRνµ(Γ) + 2Λ

√
−g

]
+

1
4π

√
−gA[α,β]g

αµgβνA[µ,ν] + Lm(uν, ψe, Aν, gµν, · · ·). (1)

• LRES theory uses nonsymmetric Γ̂αµν and Nµν, excludes
√
−gA[α,β]g

αµgβνA[µ,ν],
and includes Λz from zero-point fluctuations,

L( Γ̂λρτ , Nρτ) = − 1
16π

[√
−NN−1µνRνµ( Γ̂ ) + 2Λb

√
−N

]
− 1
16π

2Λz
√
−g+ Lm(uν, ψe, Aν, gµν, · · ·), N=det(Nµν) (2)

where the “bare”Λb ≈ −Λz so the “physical”Λ=Λb+Λz matches measurement,
and the metric gµν and potential Aν are defined by

√
−ggνµ=

√
−NN−1(µν), Aν = Γ̂

ρ
[νρ]/

√
−18Λb , (with c=G=1). (3)

• lim
|Λz|→∞

(
LRES
theory

)
=

(
Einstein−Maxwell

theory

)
but ωc∼

1
lP

⇒ |Λz|∼ ω4
c l

2
P ∼

1
l2P
.



LRES theory avoids the problems of Einstein-Schrödinger theory

• Matches measurement as well as Einstein-Maxwell theory.

• Definitely predicts a Lorentz force:
- Usual Lorentz force equation results from divergence of Einstein equations,
- Lorentz force also results from the EIH method, with Lm = 0.

• Avoids ghosts:
- With a cutoff frequency ωc∼1/lP we have Λz ∼ −ω4

c l
2
P (with c=G=1),

- Ghosts are cut off because they would have ωghost=
√
−2Λz ∼

√
2ω2

c lP > ωc,
- If we fully renormalize with ωc→∞ then ωghost→∞, meaning no ghost.

• Well motivated:
- It’s a vacuum energy renormalization of Einstein-Schrödinger theory,
- Λz

√
−g term should be expected to occur as a quantization effect,

- Zero-point fluctuations are essential to QED - they cause the Casimir effect,
- Λ=Λb+Λz is similar to mass/charge/field-strength renormalization in QED,
- Λz

√
−g modification has never been considered before.



LRES theory matches measurement as well as Einstein-Maxwell theory

• Reduces to ordinary GR without electromagnetism for symmetric fields.

• Extra terms in Einstein and Maxwell equations are <10−16 of usual terms
for worst-case |Fµν|, |Fµν;α| and |Fµν;α;β| accessible to measurement.

• Exact solutions:
- EM plane-wave solution is identical to that of Einstein-Maxwell theory.
- Charged solution and Reissner-Nordström sol.have tiny fractional difference:

10−76 for r=Q=M=M⊙, 10−64 for r=10−17cm,Q=e,M=Me.

• Standard tests | fractional difference from Einstein-Maxwell result
test case → | extremal charged black hole | atomic parameters

| Q=M=M⊙, r=4M | Q=e,M=MP , r=a0
periastron advance | 10−78 | 10−91

deflection of light | 10−79 | 10−57

time delay of light | 10−78 | 10−56

• Other Standard Model fields can be added just like Einstein-Maxwell theory:
- Energy levels of Hydrogen atom have fractional difference of <10−90.



Why pursue LRES theory if it’s so close to Einstein-Maxwell theory?

• It unifies gravitation and electromagnetism in a classical sense.

• Quantization of LRES theory is untried approach to quantization of gravity:
- LRES theory gets much different than Einstein-Maxwell theory as k→1/lP ,
- This could possibly fix some infinities which spoil the quantization of GR.

• LRES theory suggests untried approaches to a complete unified field theory:
- Higher dimensions, but with LRES theory instead of vacuum GR?
- Non-abelian fields, but with LRES theory instead of Einstein-Maxwell?

• We still don’t have a unified field theory, 50 years after Einstein:
- Standard Model: excludes gravity, 25 parameters, not very “beautiful”,
- String theory: background dependent, spin-2 particle ⇒ GR?,10500 versions,
problems accounting for Λ>0 and broken symmetry, little predictive ability.



Summary of Λ-renormalized Einstein-Schrödinger theory

• lim
|Λz|→∞

(
LRES
theory

)
=

(
Einstein−Maxwell

theory

)
but ωc∼

1
lP

⇒ |Λz|∼ ω4
c l

2
P ∼

1
l2P
.

• Matches measurement as well as Einstein-Maxwell theory.

• Reduces to ordinary GR without electromagnetism for symmetric fields.

• Other Standard Model fields can be added just like Einstein-Maxwell theory.

• Avoids the problems of the original Einstein-Schrödinger theory.

• Well motivated - it’s the ES theory but with a quantization effect.

• Unifies gravitation and electromagnetism in a classical sense.

• Suggests untried approaches to a complete quantized unified field theory.

• For the details see my papers: www.arxiv.org/abs/gr-qc/0310124,
www.arxiv.org/abs/gr-qc/0403052, www.arxiv.org/abs/gr-qc/0411016.



Backup charts



The Lagrangian Density Again

• Aν and Fµν are defined by (with c=G=1)

Aν = Γ̂
ρ
[νρ]/

√
−18Λb, Fµν = Aν, µ−Aµ,ν. (4)

• Γ̂ανµ can be decomposed into Γ̃ανµ with the symmetry Γ̃ανα= Γ̃ααν, and Aν,

Γ̃ανµ = Γ̂ανµ + (δαµ Γ̂
σ
[σν] − δαν Γ̂

σ
[σµ])/3 ⇒ Γ̂ανµ = Γ̃ανµ +2δα[µAν]

√
−2Λ1/2

b . (5)

• The “Hermitianized Ricci tensor” in (2) reduces to the ordinary Ricci tensor
for symmetric fields with Γα[νµ]=0 and Γα

α[ν,µ]=Rα
αµν/2=0,

Rνµ(Γ̂ )= Γ̂ανµ,α − Γ̂α(α(ν),µ) + Γ̂ρνµΓ̂
α
(ρα) − Γ̂ρναΓ̂

α
ρµ − Γ̂τ[τν]Γ̂

α
[αµ]/3. (6)

• Rνµ exhibits both charge conjugation symmetry and gauge invariance

Rµν(Γ̂
T)=Rνµ(Γ̂ ), Rνµ(Γ̂

α
ρτ + δα[ρϕ,τ ]) = Rνµ(Γ̂

α
ρτ). (7)

• The Lagrangian density (2) in terms of Aµ, Γ̃ανµ and R̃νµ=Rνµ(Γ̃) is,

L(Γ̂λρτ , Nρτ) = − 1
16π

[√
−NN−1µν(R̃νµ +2A[ν,µ]

√
−2Λ1/2

b ) + 2Λb
√
−N

]
− 1
16π

2Λz
√
−g+ Lm(uν, ψe, Aν, gµν, · · ·). (8)



The Einstein Equations

• gµν and fµν are defined by (with c=G=1)
√
−g gνµ =

√
−NN−1(µν), (9)

√
−gfνµ =

√
−NN−1[µν]Λ1/2

b /
√
−2. (10)

Inverting these definitions gives (after some effort)

N(νµ) = gνµ − 2
(
fν
αfαµ − 1

4
gνµf

ραfαρ

)
Λ−1
b +O(Λ−2

b ), (11)

N[νµ] = fνµ
√
−2Λ−1/2

b +O(Λ−3/2
b ). (12)

• fµν≈Fµν comes from δL/δ(
√
−NN−1[µν])=0 and R̃[νµ]=O(Λ−1/2

b ) from (26),

N[νµ] = 2A[µ,ν]

√
−2Λ−1/2

b −R̃[νµ]Λ
−1
b , (13)

⇒ fνµ = Aµ,ν−Aν, µ +O(Λ−1
b ). (14)

• Einstein equations come from δL/δ(
√
−NN−1(µν))=0,

R̃(νµ)−
1
2
gνµR̃ρ

ρ = 8πTνµ−Λb
(
N(νµ) −

1
2
gνµN

ρ
ρ

)
+Λz gνµ (15)

= 8πTνµ +2
(
fν
αfαµ−

1
4
gνµf

ραfαρ

)
+Λgνµ +O(Λ−1

b ). (16)



Maxwell’s Equations

• Maxwell’s equations come from δL/δAτ=0 and Fµν=Aν, µ−Aµ,ν,

fντ ; ν = 4πjτ , (17)
F[µν,α] = 0, (18)

where fµν≈Fµν and

jτ =
−1
√
−g

δLm
δAτ

. (19)

• Lm may contain other fields just like Einstein-Maxwell theory,

jτ = Qψ̄eγ
τψe for spin−1/2, (20)

jτ = ρuτ for classical hydrodynamics. (21)



The Connection Equations

• Relation between Γ̃αµν and Nµν like (
√
−ggτρ);β=0 comes from δL/δΓ̃βτρ=0,

(
√
−NN−1ρτ), β + Γ̃τνβ

√
−NN−1ρν+ Γ̃

ρ
βν

√
−NN−1ντ − Γ̃αβα

√
−NN−1ρτ

=
8π
3

√
−gj[ρδτ ]β

√
−2Λ−1/2

b . (22)

• Solving these equations gives

Γ̃α(νµ) =
1
2
gαρ(gµρ,ν + gρν,µ − gνµ,ρ) +O(Λ−1

b ), (23)

Γ̃α[νµ] = O(Λ−1/2
b ), (24)

R̃(νµ) = Rνµ + (terms like fατfτ(µ;ν);αΛ
−1
b and fρµ;αf

α
ν;ρΛ

−1
b ), (25)

R̃[νµ] = (terms like f[µν,τ ];
τΛ−1/2

b , f τ [µ;[ν];τ ]Λ
−1/2
b and j[ν,µ]Λ

−1/2
b ). (26)

⇒ R̃(νµ)≈Rνµ and fνµ≈Fνµ with fractional differences <10−16 for worst-case
|fµν|, |fµν;α|, |fµν;α;β| accessible to measurement (e.g. 1020eV,1034Hz γ-rays).



The Generalized Contracted Bianchi Identity

• A generalized contracted Bianchi identity results from (22),

(
√
−NN−1σνR̃νλ +

√
−NN−1νσR̃λν), σ −

√
−NN−1σνR̃νσ, λ = 0. (27)

• It may also be written in the manifestly covariant form,

(
√
−NN−1σνR̃νλ +

√
−NN−1νσR̃λν);σ −

√
−NN−1σνR̃νσ;λ = 0, (28)

• Or in a third form,

G̃σ
λ;σ=

(
3
2
fσνR̃[σν,λ]+4πjνR̃[νλ]

)√
−2Λ−1/2

b , (29)

where

G̃νµ=R̃(νµ) −
1
2
gνµR̃ρ

ρ . (30)

• The usual contracted Bianchi identity 2(
√
−ggσνRνλ), σ −

√
−ggσνRνσ, λ=0,

or Gσ
λ;σ=0 is also valid.



The Lorentz Force Equation

• Lorentz force equation comes from divergence of the Einstein equations (15)

T νµ; ν = Fµνj
ν (31)

where

jτ =
−1
√
−g

δLm
δAτ

, (32)

Tµν = Sµν−
1

2
gµνS

α
α, (33)

Sµν =
2 δLm

δ(
√
−ggνµ)

. (34)

• Here we have used equations (29,17,13) and the following identity which
can be derived using only the definitions of gµν and fµν,(

N (µ
σ)−

1
2
δµσN

ρ
ρ

)
;µ =

(
3
2
fνρN[νρ,σ] + fνρ;νN[ρσ]

)√
−2Λ−1/2

b . (35)

• Covariant derivative “;” is always done using the Christoffel connection
formed from the symmetric metric gµν.



An Exact Charged Solution

• This charged solution is very close to the Reissner-Nordström solution,

gνµ = č

 a
−1/ač2

−r2
−r2sin2θ

 , (36)

fνµ =
1

č

 0 Q/r2

−Q/r2 0
0

0

 , (37)

A0 =
Q

r

[
1+

M

Λbr3
−

4Q2

5Λbr4
+O(Λ−2

b )

]
, (38)

where

a = 1−
2M

r
+
Q2

r2

[
1+

Q2

10Λbr4
+O(Λ−2

b )

]
, č =

√
1−

2Q2

Λbr4
. (39)

• Additional terms are tiny for worst-case radii accessible to measurement:
- Q2/Λbr4 ∼10−76@r=Q=M=M⊙; ∼10−64@r=10−17cm,Q=e,M=Me,
- M/Λbr3 ∼10−76@r=Q=M=M⊙; ∼10−70@r=10−17cm,Q=e,M=Me.


